Spaces:
Sleeping
Sleeping
update speech again
Browse files
mrrrme/backend/processing/speech.py
CHANGED
|
@@ -1,3 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
Filter out short or meaningless transcriptions
|
| 2 |
|
| 3 |
Returns:
|
|
@@ -37,10 +51,10 @@ async def process_speech_end(
|
|
| 37 |
7. Send to client
|
| 38 |
"""
|
| 39 |
|
| 40 |
-
print(f"\n{'='*80}")
|
| 41 |
-
print(f"[Speech End] USER FINISHED SPEAKING: {username}")
|
| 42 |
-
print(f"{'='*80}")
|
| 43 |
-
print(f"[Transcription] '{transcription}'")
|
| 44 |
|
| 45 |
# Get latest model instances
|
| 46 |
models = get_models()
|
|
@@ -54,7 +68,7 @@ async def process_speech_end(
|
|
| 54 |
should_process, skip_reason = filter_transcription(transcription)
|
| 55 |
|
| 56 |
if not should_process:
|
| 57 |
-
print(f"[Filter] Skipped: {skip_reason}")
|
| 58 |
return
|
| 59 |
|
| 60 |
# Step 2: Save user message
|
|
@@ -62,57 +76,56 @@ async def process_speech_end(
|
|
| 62 |
|
| 63 |
try:
|
| 64 |
# ========== EMOTION DETECTION PIPELINE ==========
|
| 65 |
-
print(f"\n[Pipeline] Starting emotion analysis pipeline...")
|
| 66 |
-
print(f"{'β'*80}")
|
| 67 |
|
| 68 |
# Step 3: Get face emotion
|
| 69 |
-
print(f"[Step 1/4] FACIAL EXPRESSION ANALYSIS")
|
| 70 |
face_emotion = face_processor.get_last_emotion() or "Neutral"
|
| 71 |
face_confidence = face_processor.get_last_confidence() or 0.0
|
| 72 |
face_quality = getattr(face_processor, 'get_last_quality', lambda: 0.5)()
|
| 73 |
|
| 74 |
# Create emotion probabilities
|
| 75 |
-
# β
FIX #2: Use module-level EMOTION_MAP (capital letters)
|
| 76 |
face_probs = np.array([0.25, 0.25, 0.25, 0.25], dtype=np.float32)
|
| 77 |
if face_emotion in EMOTION_MAP:
|
| 78 |
face_idx = EMOTION_MAP[face_emotion]
|
| 79 |
face_probs[face_idx] = face_confidence
|
| 80 |
face_probs = face_probs / face_probs.sum()
|
| 81 |
|
| 82 |
-
print(f" Result: {face_emotion}")
|
| 83 |
-
print(f" Confidence: {face_confidence:.3f}")
|
| 84 |
-
print(f" Quality Score: {face_quality:.3f}")
|
| 85 |
-
print(f" Distribution: Neutral={face_probs[0]:.3f} | Happy={face_probs[1]:.3f} | Sad={face_probs[2]:.3f} | Angry={face_probs[3]:.3f}")
|
| 86 |
|
| 87 |
# Step 4: Get voice emotion
|
| 88 |
-
print(f"\n[Step 2/4] VOICE TONE ANALYSIS")
|
| 89 |
voice_probs, voice_emotion = voice_worker.get_probs()
|
| 90 |
voice_state = voice_worker.get_state()
|
| 91 |
voice_active = voice_state.get('speech_active', False)
|
| 92 |
voice_inferences = voice_state.get('inference_count', 0)
|
| 93 |
voice_skipped = voice_state.get('skipped_inferences', 0)
|
| 94 |
|
| 95 |
-
print(f" {'ACTIVELY PROCESSING' if voice_active else 'IDLE (no recent speech)'}")
|
| 96 |
-
print(f" Result: {voice_emotion}")
|
| 97 |
-
print(f" Distribution: Neutral={voice_probs[0]:.3f} | Happy={voice_probs[1]:.3f} | Sad={voice_probs[2]:.3f} | Angry={voice_probs[3]:.3f}")
|
| 98 |
-
print(f" Inferences completed: {voice_inferences}")
|
| 99 |
-
print(f" Skipped (silence optimization): {voice_skipped}")
|
| 100 |
efficiency = (voice_inferences / (voice_inferences + voice_skipped) * 100) if (voice_inferences + voice_skipped) > 0 else 0
|
| 101 |
-
print(f" Processing efficiency: {efficiency:.1f}%")
|
| 102 |
|
| 103 |
# Step 5: Analyze text sentiment
|
| 104 |
-
print(f"\n[Step 3/4] TEXT SENTIMENT ANALYSIS")
|
| 105 |
-
print(f" Using Whisper transcription")
|
| 106 |
text_analyzer.analyze(transcription)
|
| 107 |
text_probs, _ = text_analyzer.get_probs()
|
| 108 |
text_emotion = ['Neutral', 'Happy', 'Sad', 'Angry'][int(np.argmax(text_probs))]
|
| 109 |
|
| 110 |
-
print(f" Result: {text_emotion}")
|
| 111 |
-
print(f" Distribution: Neutral={text_probs[0]:.3f} | Happy={text_probs[1]:.3f} | Sad={text_probs[2]:.3f} | Angry={text_probs[3]:.3f}")
|
| 112 |
-
print(f" Text length: {len(transcription)} characters")
|
| 113 |
|
| 114 |
# Step 6: Calculate fusion with quality-aware weights
|
| 115 |
-
print(f"\n[Step 4/4] MULTI-MODAL FUSION")
|
| 116 |
base_weights = {
|
| 117 |
'face': fusion_engine.alpha_face,
|
| 118 |
'voice': fusion_engine.alpha_voice,
|
|
@@ -142,12 +155,12 @@ async def process_speech_end(
|
|
| 142 |
total_weight = sum(adjusted_weights.values())
|
| 143 |
final_weights = {k: v/total_weight for k, v in adjusted_weights.items()}
|
| 144 |
|
| 145 |
-
print(f" Base weights: Face={base_weights['face']:.3f} | Voice={base_weights['voice']:.3f} | Text={base_weights['text']:.3f}")
|
| 146 |
if adjustments_made:
|
| 147 |
-
print(f" Adjustments:")
|
| 148 |
for adj in adjustments_made:
|
| 149 |
-
print(f" - {adj}")
|
| 150 |
-
print(f" Final weights: Face={final_weights['face']:.3f} | Voice={final_weights['voice']:.3f} | Text={final_weights['text']:.3f}")
|
| 151 |
|
| 152 |
# Calculate weighted fusion
|
| 153 |
fused_probs = (
|
|
@@ -170,84 +183,83 @@ async def process_speech_end(
|
|
| 170 |
all_same = (face_emotion == voice_emotion == text_emotion)
|
| 171 |
has_conflict = len({face_emotion, voice_emotion, text_emotion}) == 3
|
| 172 |
|
| 173 |
-
print(f"\n {'β'*76}")
|
| 174 |
-
print(f" FUSION RESULTS:")
|
| 175 |
-
print(f" {'β'*76}")
|
| 176 |
-
print(f" Input emotions:")
|
| 177 |
-
|
| 178 |
-
print(f"
|
| 179 |
-
print(f"
|
| 180 |
-
print(f"
|
| 181 |
-
print(f" {
|
| 182 |
-
print(f"
|
| 183 |
-
print(f"
|
| 184 |
-
print(f"
|
| 185 |
-
print(f" {
|
| 186 |
-
print(f" Agreement: {agreement_count}/3 modalities ({agreement_score*100:.1f}%)")
|
| 187 |
|
| 188 |
if all_same:
|
| 189 |
-
print(f" Status: Perfect agreement - all modalities aligned")
|
| 190 |
elif has_conflict:
|
| 191 |
-
print(f" Status: Full conflict - weighted fusion resolved disagreement")
|
| 192 |
else:
|
| 193 |
-
print(f" Status: Partial agreement - majority vote with confidence weighting")
|
| 194 |
|
| 195 |
-
print(f" {'β'*76}")
|
| 196 |
|
| 197 |
# ========== LLM INPUT PREPARATION ==========
|
| 198 |
-
print(f"\n[LLM Input] Preparing context for language model...")
|
| 199 |
|
| 200 |
user_language = user_preferences.get("language", "en")
|
| 201 |
|
| 202 |
context_prefix = ""
|
| 203 |
if user_summary:
|
| 204 |
context_prefix = f"[User context for {username}: {user_summary}]\n\n"
|
| 205 |
-
print(f"[LLM Input] - User context: YES ({len(user_summary)} chars)")
|
| 206 |
else:
|
| 207 |
-
print(f"[LLM Input] - User context: NO (new user)")
|
| 208 |
|
| 209 |
# Add language instruction
|
| 210 |
if user_language == "nl":
|
| 211 |
context_prefix += "[BELANGRIJK: Antwoord ALTIJD in het Nederlands!]\n\n"
|
| 212 |
-
print(f"[LLM Input] - Language: Dutch (Nederlands)")
|
| 213 |
else:
|
| 214 |
context_prefix += "[IMPORTANT: ALWAYS respond in English!]\n\n"
|
| 215 |
-
print(f"[LLM Input] - Language: English")
|
| 216 |
|
| 217 |
full_llm_input = context_prefix + transcription
|
| 218 |
|
| 219 |
-
print(f"[LLM Input] - Fused emotion: {fused_emotion}")
|
| 220 |
-
print(f"[LLM Input] - Face emotion: {face_emotion}")
|
| 221 |
-
print(f"[LLM Input] - Voice emotion: {voice_emotion}")
|
| 222 |
-
print(f"[LLM Input] - Intensity: {intensity:.3f}")
|
| 223 |
-
print(f"[LLM Input] - User text: '{transcription}'")
|
| 224 |
-
print(f"[LLM Input] - Full prompt length: {len(full_llm_input)} chars")
|
| 225 |
|
| 226 |
if len(context_prefix) > 50:
|
| 227 |
-
print(f"[LLM Input] - Context preview: '{context_prefix[:100]}...'")
|
| 228 |
|
| 229 |
# Generate LLM response
|
| 230 |
-
print(f"\n[LLM] Generating response...")
|
| 231 |
response_text = llm_generator.generate_response(
|
| 232 |
fused_emotion, face_emotion, voice_emotion,
|
| 233 |
full_llm_input, force=True, intensity=intensity
|
| 234 |
)
|
| 235 |
|
| 236 |
-
print(f"[LLM] Response generated: '{response_text}'")
|
| 237 |
|
| 238 |
# Save assistant message
|
| 239 |
save_message(session_id, "assistant", response_text, fused_emotion)
|
| 240 |
|
| 241 |
# ========== SEND TO AVATAR FOR TTS ==========
|
| 242 |
-
print(f"\n[TTS] Sending to avatar backend...")
|
| 243 |
|
| 244 |
try:
|
| 245 |
voice_preference = user_preferences.get("voice", "female")
|
| 246 |
language_preference = user_preferences.get("language", "en")
|
| 247 |
|
| 248 |
-
print(f"[TTS] - Voice: {voice_preference}")
|
| 249 |
-
print(f"[TTS] - Language: {language_preference}")
|
| 250 |
-
print(f"[TTS] - Text: '{response_text}'")
|
| 251 |
|
| 252 |
avatar_response = requests.post(
|
| 253 |
f"{AVATAR_API}/speak",
|
|
@@ -261,9 +273,9 @@ async def process_speech_end(
|
|
| 261 |
avatar_response.raise_for_status()
|
| 262 |
avatar_data = avatar_response.json()
|
| 263 |
|
| 264 |
-
print(f"[TTS] Avatar TTS generated")
|
| 265 |
-
print(f"[TTS] - Audio URL: {avatar_data.get('audio_url', 'N/A')}")
|
| 266 |
-
print(f"[TTS] - Visemes: {len(avatar_data.get('visemes', []))} keyframes")
|
| 267 |
|
| 268 |
await websocket.send_json({
|
| 269 |
"type": "llm_response",
|
|
@@ -274,10 +286,10 @@ async def process_speech_end(
|
|
| 274 |
"visemes": avatar_data.get("visemes")
|
| 275 |
})
|
| 276 |
|
| 277 |
-
print(f"[Pipeline] Complete response sent to {username}")
|
| 278 |
|
| 279 |
except requests.exceptions.ConnectionError:
|
| 280 |
-
print(f"[TTS] Avatar service not available - sending text-only")
|
| 281 |
await websocket.send_json({
|
| 282 |
"type": "llm_response",
|
| 283 |
"text": response_text,
|
|
@@ -287,7 +299,7 @@ async def process_speech_end(
|
|
| 287 |
})
|
| 288 |
|
| 289 |
except Exception as avatar_err:
|
| 290 |
-
print(f"[TTS] Avatar error: {avatar_err}")
|
| 291 |
await websocket.send_json({
|
| 292 |
"type": "llm_response",
|
| 293 |
"text": response_text,
|
|
@@ -297,9 +309,9 @@ async def process_speech_end(
|
|
| 297 |
"text_only": True
|
| 298 |
})
|
| 299 |
|
| 300 |
-
print(f"{'='*80}\n")
|
| 301 |
|
| 302 |
except Exception as e:
|
| 303 |
-
print(f"[Pipeline] Error in emotion processing: {e}")
|
| 304 |
import traceback
|
| 305 |
traceback.print_exc()
|
|
|
|
| 1 |
+
"""MrrrMe Backend - Speech Processing Pipeline (COMPLETE)"""
|
| 2 |
+
import requests
|
| 3 |
+
import numpy as np
|
| 4 |
+
from typing import Optional, Dict
|
| 5 |
+
from ..models.loader import get_models
|
| 6 |
+
from ..session.manager import save_message
|
| 7 |
+
from ..utils.helpers import get_avatar_api_url
|
| 8 |
+
from ..config import HALLUCINATION_PHRASES, MIN_TRANSCRIPTION_LENGTH, EMOTION_MAP
|
| 9 |
+
|
| 10 |
+
AVATAR_API = get_avatar_api_url()
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def filter_transcription(transcription: str) -> tuple:
|
| 14 |
+
"""
|
| 15 |
Filter out short or meaningless transcriptions
|
| 16 |
|
| 17 |
Returns:
|
|
|
|
| 51 |
7. Send to client
|
| 52 |
"""
|
| 53 |
|
| 54 |
+
print(f"\n{'='*80}", flush=True)
|
| 55 |
+
print(f"[Speech End] USER FINISHED SPEAKING: {username}", flush=True)
|
| 56 |
+
print(f"{'='*80}", flush=True)
|
| 57 |
+
print(f"[Transcription] '{transcription}'", flush=True)
|
| 58 |
|
| 59 |
# Get latest model instances
|
| 60 |
models = get_models()
|
|
|
|
| 68 |
should_process, skip_reason = filter_transcription(transcription)
|
| 69 |
|
| 70 |
if not should_process:
|
| 71 |
+
print(f"[Filter] Skipped: {skip_reason}", flush=True)
|
| 72 |
return
|
| 73 |
|
| 74 |
# Step 2: Save user message
|
|
|
|
| 76 |
|
| 77 |
try:
|
| 78 |
# ========== EMOTION DETECTION PIPELINE ==========
|
| 79 |
+
print(f"\n[Pipeline] Starting emotion analysis pipeline...", flush=True)
|
| 80 |
+
print(f"{'β'*80}", flush=True)
|
| 81 |
|
| 82 |
# Step 3: Get face emotion
|
| 83 |
+
print(f"[Step 1/4] FACIAL EXPRESSION ANALYSIS", flush=True)
|
| 84 |
face_emotion = face_processor.get_last_emotion() or "Neutral"
|
| 85 |
face_confidence = face_processor.get_last_confidence() or 0.0
|
| 86 |
face_quality = getattr(face_processor, 'get_last_quality', lambda: 0.5)()
|
| 87 |
|
| 88 |
# Create emotion probabilities
|
|
|
|
| 89 |
face_probs = np.array([0.25, 0.25, 0.25, 0.25], dtype=np.float32)
|
| 90 |
if face_emotion in EMOTION_MAP:
|
| 91 |
face_idx = EMOTION_MAP[face_emotion]
|
| 92 |
face_probs[face_idx] = face_confidence
|
| 93 |
face_probs = face_probs / face_probs.sum()
|
| 94 |
|
| 95 |
+
print(f" Result: {face_emotion}", flush=True)
|
| 96 |
+
print(f" Confidence: {face_confidence:.3f}", flush=True)
|
| 97 |
+
print(f" Quality Score: {face_quality:.3f}", flush=True)
|
| 98 |
+
print(f" Distribution: Neutral={face_probs[0]:.3f} | Happy={face_probs[1]:.3f} | Sad={face_probs[2]:.3f} | Angry={face_probs[3]:.3f}", flush=True)
|
| 99 |
|
| 100 |
# Step 4: Get voice emotion
|
| 101 |
+
print(f"\n[Step 2/4] VOICE TONE ANALYSIS", flush=True)
|
| 102 |
voice_probs, voice_emotion = voice_worker.get_probs()
|
| 103 |
voice_state = voice_worker.get_state()
|
| 104 |
voice_active = voice_state.get('speech_active', False)
|
| 105 |
voice_inferences = voice_state.get('inference_count', 0)
|
| 106 |
voice_skipped = voice_state.get('skipped_inferences', 0)
|
| 107 |
|
| 108 |
+
print(f" {'ACTIVELY PROCESSING' if voice_active else 'IDLE (no recent speech)'}", flush=True)
|
| 109 |
+
print(f" Result: {voice_emotion}", flush=True)
|
| 110 |
+
print(f" Distribution: Neutral={voice_probs[0]:.3f} | Happy={voice_probs[1]:.3f} | Sad={voice_probs[2]:.3f} | Angry={voice_probs[3]:.3f}", flush=True)
|
| 111 |
+
print(f" Inferences completed: {voice_inferences}", flush=True)
|
| 112 |
+
print(f" Skipped (silence optimization): {voice_skipped}", flush=True)
|
| 113 |
efficiency = (voice_inferences / (voice_inferences + voice_skipped) * 100) if (voice_inferences + voice_skipped) > 0 else 0
|
| 114 |
+
print(f" Processing efficiency: {efficiency:.1f}%", flush=True)
|
| 115 |
|
| 116 |
# Step 5: Analyze text sentiment
|
| 117 |
+
print(f"\n[Step 3/4] TEXT SENTIMENT ANALYSIS", flush=True)
|
| 118 |
+
print(f" Using Whisper transcription", flush=True)
|
| 119 |
text_analyzer.analyze(transcription)
|
| 120 |
text_probs, _ = text_analyzer.get_probs()
|
| 121 |
text_emotion = ['Neutral', 'Happy', 'Sad', 'Angry'][int(np.argmax(text_probs))]
|
| 122 |
|
| 123 |
+
print(f" Result: {text_emotion}", flush=True)
|
| 124 |
+
print(f" Distribution: Neutral={text_probs[0]:.3f} | Happy={text_probs[1]:.3f} | Sad={text_probs[2]:.3f} | Angry={text_probs[3]:.3f}", flush=True)
|
| 125 |
+
print(f" Text length: {len(transcription)} characters", flush=True)
|
| 126 |
|
| 127 |
# Step 6: Calculate fusion with quality-aware weights
|
| 128 |
+
print(f"\n[Step 4/4] MULTI-MODAL FUSION", flush=True)
|
| 129 |
base_weights = {
|
| 130 |
'face': fusion_engine.alpha_face,
|
| 131 |
'voice': fusion_engine.alpha_voice,
|
|
|
|
| 155 |
total_weight = sum(adjusted_weights.values())
|
| 156 |
final_weights = {k: v/total_weight for k, v in adjusted_weights.items()}
|
| 157 |
|
| 158 |
+
print(f" Base weights: Face={base_weights['face']:.3f} | Voice={base_weights['voice']:.3f} | Text={base_weights['text']:.3f}", flush=True)
|
| 159 |
if adjustments_made:
|
| 160 |
+
print(f" Adjustments:", flush=True)
|
| 161 |
for adj in adjustments_made:
|
| 162 |
+
print(f" - {adj}", flush=True)
|
| 163 |
+
print(f" Final weights: Face={final_weights['face']:.3f} | Voice={final_weights['voice']:.3f} | Text={final_weights['text']:.3f}", flush=True)
|
| 164 |
|
| 165 |
# Calculate weighted fusion
|
| 166 |
fused_probs = (
|
|
|
|
| 183 |
all_same = (face_emotion == voice_emotion == text_emotion)
|
| 184 |
has_conflict = len({face_emotion, voice_emotion, text_emotion}) == 3
|
| 185 |
|
| 186 |
+
print(f"\n {'β'*76}", flush=True)
|
| 187 |
+
print(f" FUSION RESULTS:", flush=True)
|
| 188 |
+
print(f" {'β'*76}", flush=True)
|
| 189 |
+
print(f" Input emotions:", flush=True)
|
| 190 |
+
print(f" Face: {face_emotion:7s} (confidence={face_probs[EMOTION_MAP.get(face_emotion, 0)]:.3f}, weight={final_weights['face']:.3f})", flush=True)
|
| 191 |
+
print(f" Voice: {voice_emotion:7s} (confidence={voice_probs[EMOTION_MAP.get(voice_emotion, 0)]:.3f}, weight={final_weights['voice']:.3f})", flush=True)
|
| 192 |
+
print(f" Text: {text_emotion:7s} (confidence={text_probs[EMOTION_MAP.get(text_emotion, 0)]:.3f}, weight={final_weights['text']:.3f})", flush=True)
|
| 193 |
+
print(f" {'β'*76}", flush=True)
|
| 194 |
+
print(f" FUSED EMOTION: {fused_emotion}", flush=True)
|
| 195 |
+
print(f" Intensity: {intensity:.3f}", flush=True)
|
| 196 |
+
print(f" Fused distribution: Neutral={fused_probs[0]:.3f} | Happy={fused_probs[1]:.3f} | Sad={fused_probs[2]:.3f} | Angry={fused_probs[3]:.3f}", flush=True)
|
| 197 |
+
print(f" {'β'*76}", flush=True)
|
| 198 |
+
print(f" Agreement: {agreement_count}/3 modalities ({agreement_score*100:.1f}%)", flush=True)
|
|
|
|
| 199 |
|
| 200 |
if all_same:
|
| 201 |
+
print(f" Status: Perfect agreement - all modalities aligned", flush=True)
|
| 202 |
elif has_conflict:
|
| 203 |
+
print(f" Status: Full conflict - weighted fusion resolved disagreement", flush=True)
|
| 204 |
else:
|
| 205 |
+
print(f" Status: Partial agreement - majority vote with confidence weighting", flush=True)
|
| 206 |
|
| 207 |
+
print(f" {'β'*76}", flush=True)
|
| 208 |
|
| 209 |
# ========== LLM INPUT PREPARATION ==========
|
| 210 |
+
print(f"\n[LLM Input] Preparing context for language model...", flush=True)
|
| 211 |
|
| 212 |
user_language = user_preferences.get("language", "en")
|
| 213 |
|
| 214 |
context_prefix = ""
|
| 215 |
if user_summary:
|
| 216 |
context_prefix = f"[User context for {username}: {user_summary}]\n\n"
|
| 217 |
+
print(f"[LLM Input] - User context: YES ({len(user_summary)} chars)", flush=True)
|
| 218 |
else:
|
| 219 |
+
print(f"[LLM Input] - User context: NO (new user)", flush=True)
|
| 220 |
|
| 221 |
# Add language instruction
|
| 222 |
if user_language == "nl":
|
| 223 |
context_prefix += "[BELANGRIJK: Antwoord ALTIJD in het Nederlands!]\n\n"
|
| 224 |
+
print(f"[LLM Input] - Language: Dutch (Nederlands)", flush=True)
|
| 225 |
else:
|
| 226 |
context_prefix += "[IMPORTANT: ALWAYS respond in English!]\n\n"
|
| 227 |
+
print(f"[LLM Input] - Language: English", flush=True)
|
| 228 |
|
| 229 |
full_llm_input = context_prefix + transcription
|
| 230 |
|
| 231 |
+
print(f"[LLM Input] - Fused emotion: {fused_emotion}", flush=True)
|
| 232 |
+
print(f"[LLM Input] - Face emotion: {face_emotion}", flush=True)
|
| 233 |
+
print(f"[LLM Input] - Voice emotion: {voice_emotion}", flush=True)
|
| 234 |
+
print(f"[LLM Input] - Intensity: {intensity:.3f}", flush=True)
|
| 235 |
+
print(f"[LLM Input] - User text: '{transcription}'", flush=True)
|
| 236 |
+
print(f"[LLM Input] - Full prompt length: {len(full_llm_input)} chars", flush=True)
|
| 237 |
|
| 238 |
if len(context_prefix) > 50:
|
| 239 |
+
print(f"[LLM Input] - Context preview: '{context_prefix[:100]}...'", flush=True)
|
| 240 |
|
| 241 |
# Generate LLM response
|
| 242 |
+
print(f"\n[LLM] Generating response...", flush=True)
|
| 243 |
response_text = llm_generator.generate_response(
|
| 244 |
fused_emotion, face_emotion, voice_emotion,
|
| 245 |
full_llm_input, force=True, intensity=intensity
|
| 246 |
)
|
| 247 |
|
| 248 |
+
print(f"[LLM] Response generated: '{response_text}'", flush=True)
|
| 249 |
|
| 250 |
# Save assistant message
|
| 251 |
save_message(session_id, "assistant", response_text, fused_emotion)
|
| 252 |
|
| 253 |
# ========== SEND TO AVATAR FOR TTS ==========
|
| 254 |
+
print(f"\n[TTS] Sending to avatar backend...", flush=True)
|
| 255 |
|
| 256 |
try:
|
| 257 |
voice_preference = user_preferences.get("voice", "female")
|
| 258 |
language_preference = user_preferences.get("language", "en")
|
| 259 |
|
| 260 |
+
print(f"[TTS] - Voice: {voice_preference}", flush=True)
|
| 261 |
+
print(f"[TTS] - Language: {language_preference}", flush=True)
|
| 262 |
+
print(f"[TTS] - Text: '{response_text}'", flush=True)
|
| 263 |
|
| 264 |
avatar_response = requests.post(
|
| 265 |
f"{AVATAR_API}/speak",
|
|
|
|
| 273 |
avatar_response.raise_for_status()
|
| 274 |
avatar_data = avatar_response.json()
|
| 275 |
|
| 276 |
+
print(f"[TTS] Avatar TTS generated", flush=True)
|
| 277 |
+
print(f"[TTS] - Audio URL: {avatar_data.get('audio_url', 'N/A')}", flush=True)
|
| 278 |
+
print(f"[TTS] - Visemes: {len(avatar_data.get('visemes', []))} keyframes", flush=True)
|
| 279 |
|
| 280 |
await websocket.send_json({
|
| 281 |
"type": "llm_response",
|
|
|
|
| 286 |
"visemes": avatar_data.get("visemes")
|
| 287 |
})
|
| 288 |
|
| 289 |
+
print(f"[Pipeline] Complete response sent to {username}", flush=True)
|
| 290 |
|
| 291 |
except requests.exceptions.ConnectionError:
|
| 292 |
+
print(f"[TTS] Avatar service not available - sending text-only", flush=True)
|
| 293 |
await websocket.send_json({
|
| 294 |
"type": "llm_response",
|
| 295 |
"text": response_text,
|
|
|
|
| 299 |
})
|
| 300 |
|
| 301 |
except Exception as avatar_err:
|
| 302 |
+
print(f"[TTS] Avatar error: {avatar_err}", flush=True)
|
| 303 |
await websocket.send_json({
|
| 304 |
"type": "llm_response",
|
| 305 |
"text": response_text,
|
|
|
|
| 309 |
"text_only": True
|
| 310 |
})
|
| 311 |
|
| 312 |
+
print(f"{'='*80}\n", flush=True)
|
| 313 |
|
| 314 |
except Exception as e:
|
| 315 |
+
print(f"[Pipeline] Error in emotion processing: {e}", flush=True)
|
| 316 |
import traceback
|
| 317 |
traceback.print_exc()
|