Spaces:
Sleeping
Sleeping
MusaedMusaedSadeqMusaedAl-Fareh225739
commited on
Commit
Β·
d924b09
1
Parent(s):
6cd0b2f
Backend_upgrade
Browse files- mrrrme/backend_new.py +19 -0
- mrrrme/{backend_server.py β backend_server_old.py} +1122 -1122
- mrrrme/database/db_tool.py +1 -1
mrrrme/backend_new.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
MrrrMe Backend Entry Point
|
| 3 |
+
This script runs the modular backend located in the 'backend/' folder.
|
| 4 |
+
"""
|
| 5 |
+
import uvicorn
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
|
| 9 |
+
# Ensure we can import from the backend folder
|
| 10 |
+
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
| 11 |
+
|
| 12 |
+
# Import the 'app' object from the new modular structure
|
| 13 |
+
# This triggers backend/app.py, which loads all your other modules
|
| 14 |
+
from backend.app import app
|
| 15 |
+
|
| 16 |
+
if __name__ == "__main__":
|
| 17 |
+
print("π Starting MrrrMe Modular Backend...")
|
| 18 |
+
# This matches the logic from the bottom of your old backend_server.py
|
| 19 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
mrrrme/{backend_server.py β backend_server_old.py}
RENAMED
|
@@ -1,1123 +1,1123 @@
|
|
| 1 |
-
"""MrrrMe Backend WebSocket Server - ENHANCED LOGGING VERSION"""
|
| 2 |
-
import os
|
| 3 |
-
import sys
|
| 4 |
-
|
| 5 |
-
# ===== SET CACHE DIRECTORIES FIRST =====
|
| 6 |
-
os.environ['HF_HOME'] = '/tmp/huggingface'
|
| 7 |
-
os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers'
|
| 8 |
-
os.environ['HF_HUB_CACHE'] = '/tmp/huggingface/hub'
|
| 9 |
-
os.environ['TORCH_HOME'] = '/tmp/torch'
|
| 10 |
-
os.makedirs('/tmp/huggingface', exist_ok=True)
|
| 11 |
-
os.makedirs('/tmp/transformers', exist_ok=True)
|
| 12 |
-
os.makedirs('/tmp/huggingface/hub', exist_ok=True)
|
| 13 |
-
os.makedirs('/tmp/torch', exist_ok=True)
|
| 14 |
-
|
| 15 |
-
# ===== GPU FIX: Patch TensorBoard =====
|
| 16 |
-
class DummySummaryWriter:
|
| 17 |
-
def __init__(self, *args, **kwargs): pass
|
| 18 |
-
def __getattr__(self, name): return lambda *args, **kwargs: None
|
| 19 |
-
|
| 20 |
-
try:
|
| 21 |
-
import tensorboardX
|
| 22 |
-
tensorboardX.SummaryWriter = DummySummaryWriter
|
| 23 |
-
except: pass
|
| 24 |
-
|
| 25 |
-
# ===== GPU FIX: Patch Logging to redirect /work paths =====
|
| 26 |
-
import logging
|
| 27 |
-
_original_FileHandler = logging.FileHandler
|
| 28 |
-
|
| 29 |
-
class RedirectingFileHandler(_original_FileHandler):
|
| 30 |
-
def __init__(self, filename, mode='a', encoding=None, delay=False, errors=None):
|
| 31 |
-
if isinstance(filename, str) and filename.startswith('/work'):
|
| 32 |
-
filename = '/tmp/openface_log.txt'
|
| 33 |
-
os.makedirs(os.path.dirname(filename) if os.path.dirname(filename) else '/tmp', exist_ok=True)
|
| 34 |
-
super().__init__(filename, mode, encoding, delay, errors)
|
| 35 |
-
|
| 36 |
-
logging.FileHandler = RedirectingFileHandler
|
| 37 |
-
|
| 38 |
-
# Now import everything else
|
| 39 |
-
import asyncio
|
| 40 |
-
import json
|
| 41 |
-
import base64
|
| 42 |
-
import numpy as np
|
| 43 |
-
import cv2
|
| 44 |
-
import io
|
| 45 |
-
import torch
|
| 46 |
-
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, HTTPException
|
| 47 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 48 |
-
from pydantic import BaseModel
|
| 49 |
-
import requests
|
| 50 |
-
from PIL import Image
|
| 51 |
-
from typing import Optional
|
| 52 |
-
import sqlite3
|
| 53 |
-
import secrets
|
| 54 |
-
import hashlib
|
| 55 |
-
from datetime import datetime
|
| 56 |
-
|
| 57 |
-
# Check GPU
|
| 58 |
-
if not torch.cuda.is_available():
|
| 59 |
-
print("[Backend] β οΈ No GPU detected - using CPU mode")
|
| 60 |
-
else:
|
| 61 |
-
print(f"[Backend] β
GPU available: {torch.cuda.get_device_name(0)}")
|
| 62 |
-
|
| 63 |
-
app = FastAPI()
|
| 64 |
-
|
| 65 |
-
# CORS for browser access
|
| 66 |
-
app.add_middleware(
|
| 67 |
-
CORSMiddleware,
|
| 68 |
-
allow_origins=["*"],
|
| 69 |
-
allow_credentials=True,
|
| 70 |
-
allow_methods=["*"],
|
| 71 |
-
allow_headers=["*"],
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
-
# Global model variables (will be loaded after startup)
|
| 75 |
-
face_processor = None
|
| 76 |
-
text_analyzer = None
|
| 77 |
-
whisper_worker = None
|
| 78 |
-
voice_worker = None
|
| 79 |
-
llm_generator = None
|
| 80 |
-
fusion_engine = None
|
| 81 |
-
models_ready = False
|
| 82 |
-
|
| 83 |
-
# Avatar backend URL - environment aware
|
| 84 |
-
def get_avatar_api_url():
|
| 85 |
-
"""Get correct avatar API URL based on environment"""
|
| 86 |
-
# For Hugging Face Spaces, use same host
|
| 87 |
-
if os.path.exists('/.dockerenv') or os.environ.get('SPACE_ID'):
|
| 88 |
-
# Running in Docker/HF Spaces - use internal networking
|
| 89 |
-
return "http://127.0.0.1:8765"
|
| 90 |
-
else:
|
| 91 |
-
# Local development
|
| 92 |
-
return "http://localhost:8765"
|
| 93 |
-
|
| 94 |
-
AVATAR_API = get_avatar_api_url()
|
| 95 |
-
print(f"[Backend] π Avatar API URL: {AVATAR_API}")
|
| 96 |
-
|
| 97 |
-
# ===== AUTHENTICATION & DATABASE =====
|
| 98 |
-
# Use /data for Hugging Face Spaces (persistent) or /tmp for local dev
|
| 99 |
-
if os.path.exists('/data'):
|
| 100 |
-
DB_PATH = "/data/mrrrme_users.db"
|
| 101 |
-
print("[Backend] π Using persistent storage: /data/mrrrme_users.db")
|
| 102 |
-
else:
|
| 103 |
-
DB_PATH = "/tmp/mrrrme_users.db"
|
| 104 |
-
print("[Backend] β οΈ Using ephemeral storage: /tmp/mrrrme_users.db (will reset on rebuild!)")
|
| 105 |
-
print("[Backend] β οΈ To persist data, enable persistent storage in HF Spaces settings")
|
| 106 |
-
|
| 107 |
-
class SignupRequest(BaseModel):
|
| 108 |
-
username: str
|
| 109 |
-
password: str
|
| 110 |
-
|
| 111 |
-
class LoginRequest(BaseModel):
|
| 112 |
-
username: str
|
| 113 |
-
password: str
|
| 114 |
-
|
| 115 |
-
def init_db():
|
| 116 |
-
conn = sqlite3.connect(DB_PATH)
|
| 117 |
-
cursor = conn.cursor()
|
| 118 |
-
|
| 119 |
-
cursor.execute("""
|
| 120 |
-
CREATE TABLE IF NOT EXISTS users (
|
| 121 |
-
user_id TEXT PRIMARY KEY,
|
| 122 |
-
username TEXT UNIQUE NOT NULL,
|
| 123 |
-
password_hash TEXT NOT NULL,
|
| 124 |
-
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
| 125 |
-
)
|
| 126 |
-
""")
|
| 127 |
-
|
| 128 |
-
cursor.execute("""
|
| 129 |
-
CREATE TABLE IF NOT EXISTS sessions (
|
| 130 |
-
session_id TEXT PRIMARY KEY,
|
| 131 |
-
user_id TEXT NOT NULL,
|
| 132 |
-
token TEXT UNIQUE NOT NULL,
|
| 133 |
-
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
| 134 |
-
is_active BOOLEAN DEFAULT 1
|
| 135 |
-
)
|
| 136 |
-
""")
|
| 137 |
-
|
| 138 |
-
cursor.execute("""
|
| 139 |
-
CREATE TABLE IF NOT EXISTS messages (
|
| 140 |
-
message_id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 141 |
-
session_id TEXT NOT NULL,
|
| 142 |
-
role TEXT NOT NULL,
|
| 143 |
-
content TEXT NOT NULL,
|
| 144 |
-
emotion TEXT,
|
| 145 |
-
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
| 146 |
-
)
|
| 147 |
-
""")
|
| 148 |
-
|
| 149 |
-
cursor.execute("""
|
| 150 |
-
CREATE TABLE IF NOT EXISTS user_summaries (
|
| 151 |
-
user_id TEXT PRIMARY KEY,
|
| 152 |
-
summary_text TEXT NOT NULL,
|
| 153 |
-
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
| 154 |
-
)
|
| 155 |
-
""")
|
| 156 |
-
|
| 157 |
-
conn.commit()
|
| 158 |
-
conn.close()
|
| 159 |
-
|
| 160 |
-
init_db()
|
| 161 |
-
|
| 162 |
-
def hash_password(pw: str) -> str:
|
| 163 |
-
return hashlib.sha256(pw.encode()).hexdigest()
|
| 164 |
-
|
| 165 |
-
@app.post("/api/signup")
|
| 166 |
-
async def signup(req: SignupRequest):
|
| 167 |
-
conn = sqlite3.connect(DB_PATH)
|
| 168 |
-
cursor = conn.cursor()
|
| 169 |
-
|
| 170 |
-
try:
|
| 171 |
-
user_id = secrets.token_urlsafe(16)
|
| 172 |
-
cursor.execute(
|
| 173 |
-
"INSERT INTO users (user_id, username, password_hash) VALUES (?, ?, ?)",
|
| 174 |
-
(user_id, req.username, hash_password(req.password))
|
| 175 |
-
)
|
| 176 |
-
conn.commit()
|
| 177 |
-
conn.close()
|
| 178 |
-
return {"success": True, "message": "Account created!"}
|
| 179 |
-
except sqlite3.IntegrityError:
|
| 180 |
-
conn.close()
|
| 181 |
-
raise HTTPException(status_code=400, detail="Username already exists")
|
| 182 |
-
|
| 183 |
-
@app.post("/api/login")
|
| 184 |
-
async def login(req: LoginRequest):
|
| 185 |
-
conn = sqlite3.connect(DB_PATH)
|
| 186 |
-
cursor = conn.cursor()
|
| 187 |
-
|
| 188 |
-
cursor.execute(
|
| 189 |
-
"SELECT user_id, username FROM users WHERE username = ? AND password_hash = ?",
|
| 190 |
-
(req.username, hash_password(req.password))
|
| 191 |
-
)
|
| 192 |
-
|
| 193 |
-
result = cursor.fetchone()
|
| 194 |
-
|
| 195 |
-
if not result:
|
| 196 |
-
conn.close()
|
| 197 |
-
raise HTTPException(status_code=401, detail="Invalid credentials")
|
| 198 |
-
|
| 199 |
-
user_id, username = result
|
| 200 |
-
|
| 201 |
-
session_id = secrets.token_urlsafe(16)
|
| 202 |
-
token = secrets.token_urlsafe(32)
|
| 203 |
-
|
| 204 |
-
cursor.execute(
|
| 205 |
-
"INSERT INTO sessions (session_id, user_id, token) VALUES (?, ?, ?)",
|
| 206 |
-
(session_id, user_id, token)
|
| 207 |
-
)
|
| 208 |
-
|
| 209 |
-
cursor.execute(
|
| 210 |
-
"SELECT summary_text FROM user_summaries WHERE user_id = ?",
|
| 211 |
-
(user_id,)
|
| 212 |
-
)
|
| 213 |
-
summary_row = cursor.fetchone()
|
| 214 |
-
summary = summary_row[0] if summary_row else None
|
| 215 |
-
|
| 216 |
-
conn.commit()
|
| 217 |
-
conn.close()
|
| 218 |
-
|
| 219 |
-
return {
|
| 220 |
-
"success": True,
|
| 221 |
-
"token": token,
|
| 222 |
-
"username": username,
|
| 223 |
-
"user_id": user_id,
|
| 224 |
-
"summary": summary
|
| 225 |
-
}
|
| 226 |
-
|
| 227 |
-
class LogoutRequest(BaseModel):
|
| 228 |
-
token: str
|
| 229 |
-
|
| 230 |
-
@app.post("/api/logout")
|
| 231 |
-
async def logout(req: LogoutRequest):
|
| 232 |
-
conn = sqlite3.connect(DB_PATH)
|
| 233 |
-
cursor = conn.cursor()
|
| 234 |
-
|
| 235 |
-
# Get session info before closing
|
| 236 |
-
cursor.execute(
|
| 237 |
-
"SELECT session_id, user_id FROM sessions WHERE token = ? AND is_active = 1",
|
| 238 |
-
(req.token,)
|
| 239 |
-
)
|
| 240 |
-
result = cursor.fetchone()
|
| 241 |
-
|
| 242 |
-
if result:
|
| 243 |
-
session_id, user_id = result
|
| 244 |
-
|
| 245 |
-
# Mark session as inactive
|
| 246 |
-
cursor.execute(
|
| 247 |
-
"UPDATE sessions SET is_active = 0 WHERE token = ?",
|
| 248 |
-
(req.token,)
|
| 249 |
-
)
|
| 250 |
-
conn.commit()
|
| 251 |
-
conn.close()
|
| 252 |
-
|
| 253 |
-
# Generate summary on explicit logout
|
| 254 |
-
print(f"[Logout] π Generating summary for user {user_id}...")
|
| 255 |
-
summary = await generate_session_summary(session_id, user_id)
|
| 256 |
-
if summary:
|
| 257 |
-
print(f"[Logout] β
Summary generated")
|
| 258 |
-
|
| 259 |
-
return {"success": True, "message": "Logged out successfully"}
|
| 260 |
-
else:
|
| 261 |
-
conn.close()
|
| 262 |
-
return {"success": True, "message": "Session already closed"}
|
| 263 |
-
|
| 264 |
-
async def generate_session_summary(session_id: str, user_id: str):
|
| 265 |
-
"""Generate AI summary of conversation for THIS specific user"""
|
| 266 |
-
conn = sqlite3.connect(DB_PATH)
|
| 267 |
-
cursor = conn.cursor()
|
| 268 |
-
|
| 269 |
-
# Verify session belongs to user
|
| 270 |
-
cursor.execute(
|
| 271 |
-
"SELECT user_id FROM sessions WHERE session_id = ?",
|
| 272 |
-
(session_id,)
|
| 273 |
-
)
|
| 274 |
-
session_owner = cursor.fetchone()
|
| 275 |
-
|
| 276 |
-
if not session_owner or session_owner[0] != user_id:
|
| 277 |
-
print(f"[Summary] β Security error: session {session_id} doesn't belong to user {user_id}")
|
| 278 |
-
conn.close()
|
| 279 |
-
return None
|
| 280 |
-
|
| 281 |
-
# Get messages from this session
|
| 282 |
-
cursor.execute(
|
| 283 |
-
"SELECT role, content, emotion FROM messages WHERE session_id = ? ORDER BY timestamp ASC",
|
| 284 |
-
(session_id,)
|
| 285 |
-
)
|
| 286 |
-
|
| 287 |
-
messages = cursor.fetchall()
|
| 288 |
-
|
| 289 |
-
# Get username for better logging
|
| 290 |
-
cursor.execute("SELECT username FROM users WHERE user_id = ?", (user_id,))
|
| 291 |
-
username_row = cursor.fetchone()
|
| 292 |
-
username = username_row[0] if username_row else user_id
|
| 293 |
-
|
| 294 |
-
conn.close()
|
| 295 |
-
|
| 296 |
-
if len(messages) < 3:
|
| 297 |
-
print(f"[Summary] βοΈ Skipped for {username} (only {len(messages)} messages)")
|
| 298 |
-
return None
|
| 299 |
-
|
| 300 |
-
conversation = ""
|
| 301 |
-
for role, content, emotion in messages:
|
| 302 |
-
speaker = "User" if role == "user" else "AI"
|
| 303 |
-
emo_tag = f" [{emotion}]" if emotion else ""
|
| 304 |
-
conversation += f"{speaker}{emo_tag}: {content}\n"
|
| 305 |
-
|
| 306 |
-
try:
|
| 307 |
-
from groq import Groq
|
| 308 |
-
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
| 309 |
-
|
| 310 |
-
prompt = f"""Analyze this conversation and create a 2-3 sentence summary about THIS SPECIFIC USER.
|
| 311 |
-
|
| 312 |
-
DO NOT include information about other users or other conversations.
|
| 313 |
-
ONLY summarize what THIS user said and their patterns.
|
| 314 |
-
|
| 315 |
-
Conversation ({len(messages)} messages):
|
| 316 |
-
{conversation}
|
| 317 |
-
|
| 318 |
-
Create a concise summary including: topics this user discussed, their emotional patterns, personal details THEY mentioned, and their preferences."""
|
| 319 |
-
|
| 320 |
-
response = groq_client.chat.completions.create(
|
| 321 |
-
model="llama-3.1-8b-instant",
|
| 322 |
-
messages=[{"role": "user", "content": prompt}],
|
| 323 |
-
max_tokens=150,
|
| 324 |
-
temperature=0.7
|
| 325 |
-
)
|
| 326 |
-
|
| 327 |
-
summary = response.choices[0].message.content.strip()
|
| 328 |
-
|
| 329 |
-
# Save summary FOR THIS USER ONLY
|
| 330 |
-
conn = sqlite3.connect(DB_PATH)
|
| 331 |
-
cursor = conn.cursor()
|
| 332 |
-
|
| 333 |
-
cursor.execute(
|
| 334 |
-
"INSERT OR REPLACE INTO user_summaries (user_id, summary_text, updated_at) VALUES (?, ?, ?)",
|
| 335 |
-
(user_id, summary, datetime.now())
|
| 336 |
-
)
|
| 337 |
-
|
| 338 |
-
conn.commit()
|
| 339 |
-
conn.close()
|
| 340 |
-
|
| 341 |
-
print(f"[Summary] β
Generated for {username} (user_id: {user_id})")
|
| 342 |
-
print(f"[Summary] π Content: {summary}")
|
| 343 |
-
return summary
|
| 344 |
-
|
| 345 |
-
except Exception as e:
|
| 346 |
-
print(f"[Summary] β Error for {username}: {e}")
|
| 347 |
-
import traceback
|
| 348 |
-
traceback.print_exc()
|
| 349 |
-
return None
|
| 350 |
-
|
| 351 |
-
@app.on_event("startup")
|
| 352 |
-
async def startup_event():
|
| 353 |
-
"""Start loading models in background after server is ready"""
|
| 354 |
-
print("[Backend] π Starting up...")
|
| 355 |
-
|
| 356 |
-
# Check if avatar service is running
|
| 357 |
-
try:
|
| 358 |
-
response = requests.get(f"{AVATAR_API}/", timeout=2)
|
| 359 |
-
if response.status_code == 200:
|
| 360 |
-
print(f"[Backend] β
Avatar TTS service available at {AVATAR_API}")
|
| 361 |
-
else:
|
| 362 |
-
print(f"[Backend] β οΈ Avatar TTS service responded with {response.status_code}")
|
| 363 |
-
except requests.exceptions.ConnectionError:
|
| 364 |
-
print(f"[Backend] β οΈ Avatar TTS service NOT available at {AVATAR_API}")
|
| 365 |
-
print(f"[Backend] π‘ Text-only mode will be used (no avatar speech)")
|
| 366 |
-
print(f"[Backend] π To enable avatar:")
|
| 367 |
-
print(f"[Backend] cd avatar && python speak_server.py")
|
| 368 |
-
except Exception as e:
|
| 369 |
-
print(f"[Backend] β οΈ Error checking avatar service: {e}")
|
| 370 |
-
|
| 371 |
-
asyncio.create_task(load_models())
|
| 372 |
-
|
| 373 |
-
async def load_models():
|
| 374 |
-
"""Load all AI models asynchronously"""
|
| 375 |
-
global face_processor, text_analyzer, whisper_worker, voice_worker
|
| 376 |
-
global llm_generator, fusion_engine, models_ready
|
| 377 |
-
|
| 378 |
-
print("[Backend] π Initializing MrrrMe AI models in background...")
|
| 379 |
-
|
| 380 |
-
try:
|
| 381 |
-
# Import modules
|
| 382 |
-
from mrrrme.vision.face_processor import FaceProcessor
|
| 383 |
-
from mrrrme.audio.voice_emotion import VoiceEmotionWorker
|
| 384 |
-
from mrrrme.audio.whisper_transcription import WhisperTranscriptionWorker
|
| 385 |
-
from mrrrme.nlp.text_sentiment import TextSentimentAnalyzer
|
| 386 |
-
from mrrrme.nlp.llm_generator_groq import LLMResponseGenerator
|
| 387 |
-
from mrrrme.config import FUSE4
|
| 388 |
-
|
| 389 |
-
# Load models
|
| 390 |
-
print("[Backend] Loading FaceProcessor...")
|
| 391 |
-
face_processor = FaceProcessor()
|
| 392 |
-
|
| 393 |
-
print("[Backend] Loading TextSentiment...")
|
| 394 |
-
text_analyzer = TextSentimentAnalyzer()
|
| 395 |
-
|
| 396 |
-
print("[Backend] Loading Whisper...")
|
| 397 |
-
whisper_worker = WhisperTranscriptionWorker(text_analyzer)
|
| 398 |
-
|
| 399 |
-
print("[Backend] Loading VoiceEmotion...")
|
| 400 |
-
voice_worker = VoiceEmotionWorker(whisper_worker=whisper_worker)
|
| 401 |
-
|
| 402 |
-
print("[Backend] Initializing LLM...")
|
| 403 |
-
groq_api_key = os.getenv("GROQ_API_KEY", "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")
|
| 404 |
-
llm_generator = LLMResponseGenerator(api_key=groq_api_key)
|
| 405 |
-
|
| 406 |
-
# Initialize fusion engine
|
| 407 |
-
class FusionEngine:
|
| 408 |
-
def __init__(self):
|
| 409 |
-
self.alpha_face = 0.4
|
| 410 |
-
self.alpha_voice = 0.3
|
| 411 |
-
self.alpha_text = 0.3
|
| 412 |
-
|
| 413 |
-
def fuse(self, face_probs, voice_probs, text_probs):
|
| 414 |
-
fused = (
|
| 415 |
-
self.alpha_face * face_probs +
|
| 416 |
-
self.alpha_voice * voice_probs +
|
| 417 |
-
self.alpha_text * text_probs
|
| 418 |
-
)
|
| 419 |
-
fused = fused / (np.sum(fused) + 1e-8)
|
| 420 |
-
fused_idx = int(np.argmax(fused))
|
| 421 |
-
fused_emotion = FUSE4[fused_idx]
|
| 422 |
-
intensity = float(np.max(fused))
|
| 423 |
-
return fused_emotion, intensity
|
| 424 |
-
|
| 425 |
-
fusion_engine = FusionEngine()
|
| 426 |
-
models_ready = True
|
| 427 |
-
|
| 428 |
-
print("[Backend] β
All models loaded!")
|
| 429 |
-
|
| 430 |
-
except Exception as e:
|
| 431 |
-
print(f"[Backend] β Error loading models: {e}")
|
| 432 |
-
import traceback
|
| 433 |
-
traceback.print_exc()
|
| 434 |
-
|
| 435 |
-
@app.get("/")
|
| 436 |
-
async def root():
|
| 437 |
-
"""Root endpoint"""
|
| 438 |
-
return {
|
| 439 |
-
"status": "running",
|
| 440 |
-
"models_ready": models_ready,
|
| 441 |
-
"message": "MrrrMe AI Backend"
|
| 442 |
-
}
|
| 443 |
-
|
| 444 |
-
@app.get("/health")
|
| 445 |
-
async def health():
|
| 446 |
-
"""Health check - responds immediately"""
|
| 447 |
-
return {
|
| 448 |
-
"status": "healthy",
|
| 449 |
-
"models_ready": models_ready
|
| 450 |
-
}
|
| 451 |
-
|
| 452 |
-
@app.get("/api/debug/users")
|
| 453 |
-
async def debug_users():
|
| 454 |
-
"""Debug endpoint - view all users and their summaries"""
|
| 455 |
-
conn = sqlite3.connect(DB_PATH)
|
| 456 |
-
cursor = conn.cursor()
|
| 457 |
-
|
| 458 |
-
cursor.execute("""
|
| 459 |
-
SELECT u.username, u.user_id, s.summary_text, s.updated_at
|
| 460 |
-
FROM users u
|
| 461 |
-
LEFT JOIN user_summaries s ON u.user_id = s.user_id
|
| 462 |
-
ORDER BY u.created_at DESC
|
| 463 |
-
""")
|
| 464 |
-
|
| 465 |
-
users = []
|
| 466 |
-
for username, user_id, summary, updated in cursor.fetchall():
|
| 467 |
-
users.append({
|
| 468 |
-
"username": username,
|
| 469 |
-
"user_id": user_id,
|
| 470 |
-
"summary": summary,
|
| 471 |
-
"summary_updated": updated
|
| 472 |
-
})
|
| 473 |
-
|
| 474 |
-
conn.close()
|
| 475 |
-
|
| 476 |
-
return {"users": users, "database": DB_PATH}
|
| 477 |
-
|
| 478 |
-
@app.get("/api/debug/sessions")
|
| 479 |
-
async def debug_sessions():
|
| 480 |
-
"""Debug endpoint - view all active sessions"""
|
| 481 |
-
conn = sqlite3.connect(DB_PATH)
|
| 482 |
-
cursor = conn.cursor()
|
| 483 |
-
|
| 484 |
-
cursor.execute("""
|
| 485 |
-
SELECT s.session_id, s.token, u.username, s.is_active, s.created_at
|
| 486 |
-
FROM sessions s
|
| 487 |
-
JOIN users u ON s.user_id = u.user_id
|
| 488 |
-
ORDER BY s.created_at DESC
|
| 489 |
-
LIMIT 20
|
| 490 |
-
""")
|
| 491 |
-
|
| 492 |
-
sessions = []
|
| 493 |
-
for session_id, token, username, is_active, created_at in cursor.fetchall():
|
| 494 |
-
sessions.append({
|
| 495 |
-
"session_id": session_id,
|
| 496 |
-
"token_preview": token[:10] + "..." if token else None,
|
| 497 |
-
"username": username,
|
| 498 |
-
"is_active": bool(is_active),
|
| 499 |
-
"created_at": created_at
|
| 500 |
-
})
|
| 501 |
-
|
| 502 |
-
conn.close()
|
| 503 |
-
|
| 504 |
-
return {"sessions": sessions, "database": DB_PATH}
|
| 505 |
-
|
| 506 |
-
@app.websocket("/ws")
|
| 507 |
-
async def websocket_endpoint(websocket: WebSocket):
|
| 508 |
-
await websocket.accept()
|
| 509 |
-
print("[WebSocket] β
Client connected!")
|
| 510 |
-
|
| 511 |
-
# ===== AUTHENTICATION =====
|
| 512 |
-
session_data = None
|
| 513 |
-
user_summary = None
|
| 514 |
-
session_id = None
|
| 515 |
-
user_id = None
|
| 516 |
-
username = None
|
| 517 |
-
|
| 518 |
-
try:
|
| 519 |
-
auth_msg = await websocket.receive_json()
|
| 520 |
-
print(f"[WebSocket] π¨ Auth message received: {auth_msg.get('type')}")
|
| 521 |
-
|
| 522 |
-
if auth_msg.get("type") != "auth":
|
| 523 |
-
print(f"[WebSocket] β Wrong message type: {auth_msg.get('type')}")
|
| 524 |
-
await websocket.send_json({"type": "error", "message": "Authentication required"})
|
| 525 |
-
return
|
| 526 |
-
|
| 527 |
-
token = auth_msg.get("token")
|
| 528 |
-
print(f"[WebSocket] π Validating token: {token[:10] if token else 'None'}...")
|
| 529 |
-
|
| 530 |
-
if not token:
|
| 531 |
-
print(f"[WebSocket] β No token provided!")
|
| 532 |
-
await websocket.send_json({"type": "error", "message": "No token provided"})
|
| 533 |
-
return
|
| 534 |
-
|
| 535 |
-
# Validate token
|
| 536 |
-
conn = sqlite3.connect(DB_PATH)
|
| 537 |
-
cursor = conn.cursor()
|
| 538 |
-
|
| 539 |
-
cursor.execute(
|
| 540 |
-
"SELECT s.session_id, s.user_id, u.username FROM sessions s JOIN users u ON s.user_id = u.user_id WHERE s.token = ? AND s.is_active = 1",
|
| 541 |
-
(token,)
|
| 542 |
-
)
|
| 543 |
-
|
| 544 |
-
result = cursor.fetchone()
|
| 545 |
-
|
| 546 |
-
if not result:
|
| 547 |
-
# Debug: Check if token exists at all
|
| 548 |
-
cursor.execute("SELECT session_id, user_id, is_active FROM sessions WHERE token = ?", (token,))
|
| 549 |
-
debug_result = cursor.fetchone()
|
| 550 |
-
|
| 551 |
-
if debug_result:
|
| 552 |
-
print(f"[WebSocket] β οΈ Token found but session inactive or invalid: {debug_result}")
|
| 553 |
-
else:
|
| 554 |
-
print(f"[WebSocket] β Token not found in database!")
|
| 555 |
-
|
| 556 |
-
await websocket.send_json({"type": "error", "message": "Invalid session - please login again"})
|
| 557 |
-
conn.close()
|
| 558 |
-
return
|
| 559 |
-
|
| 560 |
-
session_id, user_id, username = result
|
| 561 |
-
print(f"[WebSocket] β
Token validated for user: {username} (session: {session_id})")
|
| 562 |
-
|
| 563 |
-
# Get user-specific summary
|
| 564 |
-
cursor.execute(
|
| 565 |
-
"SELECT summary_text FROM user_summaries WHERE user_id = ?",
|
| 566 |
-
(user_id,)
|
| 567 |
-
)
|
| 568 |
-
summary_row = cursor.fetchone()
|
| 569 |
-
user_summary = summary_row[0] if summary_row else None
|
| 570 |
-
|
| 571 |
-
conn.close()
|
| 572 |
-
|
| 573 |
-
session_data = {
|
| 574 |
-
'session_id': session_id,
|
| 575 |
-
'user_id': user_id,
|
| 576 |
-
'username': username
|
| 577 |
-
}
|
| 578 |
-
|
| 579 |
-
# Send authenticated confirmation
|
| 580 |
-
await websocket.send_json({
|
| 581 |
-
"type": "authenticated",
|
| 582 |
-
"username": username,
|
| 583 |
-
"summary": user_summary
|
| 584 |
-
})
|
| 585 |
-
|
| 586 |
-
print(f"[WebSocket] β
Authenticated: {username} (user_id: {user_id})")
|
| 587 |
-
if user_summary:
|
| 588 |
-
print(f"[WebSocket] π Loaded summary: {user_summary[:60]}...")
|
| 589 |
-
|
| 590 |
-
# Clear LLM's conversation history
|
| 591 |
-
if llm_generator:
|
| 592 |
-
llm_generator.clear_history()
|
| 593 |
-
print(f"[LLM] ποΈ Conversation history cleared")
|
| 594 |
-
|
| 595 |
-
# Load user's recent conversation history
|
| 596 |
-
conn = sqlite3.connect(DB_PATH)
|
| 597 |
-
cursor = conn.cursor()
|
| 598 |
-
cursor.execute(
|
| 599 |
-
"""SELECT role, content FROM messages
|
| 600 |
-
WHERE session_id IN (
|
| 601 |
-
SELECT session_id FROM sessions WHERE user_id = ?
|
| 602 |
-
)
|
| 603 |
-
ORDER BY timestamp DESC
|
| 604 |
-
LIMIT 10""",
|
| 605 |
-
(user_id,)
|
| 606 |
-
)
|
| 607 |
-
user_history = cursor.fetchall()
|
| 608 |
-
conn.close()
|
| 609 |
-
|
| 610 |
-
# Load user-specific history into LLM
|
| 611 |
-
for role, content in reversed(user_history):
|
| 612 |
-
llm_generator.conversation_history.append({
|
| 613 |
-
"role": role,
|
| 614 |
-
"content": content
|
| 615 |
-
})
|
| 616 |
-
|
| 617 |
-
if user_history:
|
| 618 |
-
print(f"[WebSocket] π Loaded {len(user_history)} messages from {username}'s history")
|
| 619 |
-
|
| 620 |
-
except Exception as auth_err:
|
| 621 |
-
print(f"[WebSocket] β Auth error: {auth_err}")
|
| 622 |
-
return
|
| 623 |
-
|
| 624 |
-
# Wait for models to load if needed
|
| 625 |
-
if not models_ready:
|
| 626 |
-
await websocket.send_json({
|
| 627 |
-
"type": "status",
|
| 628 |
-
"message": "AI models are loading, please wait..."
|
| 629 |
-
})
|
| 630 |
-
|
| 631 |
-
# Wait up to 15 minutes for models
|
| 632 |
-
for _ in range(900):
|
| 633 |
-
if models_ready:
|
| 634 |
-
await websocket.send_json({
|
| 635 |
-
"type": "status",
|
| 636 |
-
"message": "Models loaded! Ready to chat."
|
| 637 |
-
})
|
| 638 |
-
break
|
| 639 |
-
await asyncio.sleep(1)
|
| 640 |
-
|
| 641 |
-
if not models_ready:
|
| 642 |
-
await websocket.send_json({
|
| 643 |
-
"type": "error",
|
| 644 |
-
"message": "Models failed to load. Please refresh."
|
| 645 |
-
})
|
| 646 |
-
return
|
| 647 |
-
|
| 648 |
-
# Session state
|
| 649 |
-
audio_buffer = []
|
| 650 |
-
user_preferences = {"voice": "female", "language": "en"}
|
| 651 |
-
|
| 652 |
-
try:
|
| 653 |
-
while True:
|
| 654 |
-
data = await websocket.receive_json()
|
| 655 |
-
msg_type = data.get("type")
|
| 656 |
-
|
| 657 |
-
# ============ PREFERENCES UPDATE ============
|
| 658 |
-
if msg_type == "preferences":
|
| 659 |
-
if "voice" in data:
|
| 660 |
-
user_preferences["voice"] = data.get("voice", "female")
|
| 661 |
-
if "language" in data:
|
| 662 |
-
user_preferences["language"] = data.get("language", "en")
|
| 663 |
-
print(f"[Preferences] {username}: voice={user_preferences.get('voice')}, language={user_preferences.get('language')}")
|
| 664 |
-
continue
|
| 665 |
-
|
| 666 |
-
# ============ AUTO-GREETING REQUEST ============
|
| 667 |
-
elif msg_type == "request_greeting":
|
| 668 |
-
try:
|
| 669 |
-
print(f"[WebSocket] π€ Generating initial greeting for {username}...")
|
| 670 |
-
|
| 671 |
-
# Determine greeting based on user context
|
| 672 |
-
greeting_prompts = {
|
| 673 |
-
"new": f"Hey {username}! I'm MrrrMe, your emotion AI companion. How are you feeling today?",
|
| 674 |
-
"returning": f"Welcome back, {username}! It's great to see you again. How have you been?"
|
| 675 |
-
}
|
| 676 |
-
|
| 677 |
-
# Check if user has summary (returning user)
|
| 678 |
-
greeting_text = greeting_prompts["returning"] if user_summary else greeting_prompts["new"]
|
| 679 |
-
|
| 680 |
-
# Add language context
|
| 681 |
-
if user_preferences.get("language") == "nl":
|
| 682 |
-
if user_summary:
|
| 683 |
-
greeting_text = f"Welkom terug, {username}! Fijn je weer te zien. Hoe gaat het met je?"
|
| 684 |
-
else:
|
| 685 |
-
greeting_text = f"Hoi {username}! Ik ben MrrrMe, jouw emotie AI-metgezel. Hoe voel je je vandaag?"
|
| 686 |
-
|
| 687 |
-
print(f"[Greeting] π Sending: '{greeting_text}'")
|
| 688 |
-
|
| 689 |
-
# Try to send to avatar for TTS
|
| 690 |
-
audio_url = None
|
| 691 |
-
visemes = None
|
| 692 |
-
|
| 693 |
-
try:
|
| 694 |
-
voice_preference = user_preferences.get("voice", "female")
|
| 695 |
-
language_preference = user_preferences.get("language", "en")
|
| 696 |
-
|
| 697 |
-
print(f"[Greeting] π Requesting TTS from avatar service...")
|
| 698 |
-
avatar_response = requests.post(
|
| 699 |
-
f"{AVATAR_API}/speak",
|
| 700 |
-
data={
|
| 701 |
-
"text": greeting_text,
|
| 702 |
-
"voice": voice_preference,
|
| 703 |
-
"language": language_preference
|
| 704 |
-
},
|
| 705 |
-
timeout=10
|
| 706 |
-
)
|
| 707 |
-
|
| 708 |
-
if avatar_response.status_code == 200:
|
| 709 |
-
avatar_data = avatar_response.json()
|
| 710 |
-
audio_url = avatar_data.get("audio_url")
|
| 711 |
-
visemes = avatar_data.get("visemes")
|
| 712 |
-
print(f"[Greeting] β
TTS generated successfully")
|
| 713 |
-
else:
|
| 714 |
-
print(f"[Greeting] β οΈ TTS failed: {avatar_response.status_code}")
|
| 715 |
-
|
| 716 |
-
except requests.exceptions.ConnectionError as conn_err:
|
| 717 |
-
print(f"[Greeting] β οΈ Avatar service not available (port 8765 not responding)")
|
| 718 |
-
print(f"[Greeting] π Sending text-only greeting (TTS will be skipped)")
|
| 719 |
-
|
| 720 |
-
except Exception as tts_err:
|
| 721 |
-
print(f"[Greeting] β οΈ TTS error: {tts_err}")
|
| 722 |
-
print(f"[Greeting] π Sending text-only greeting")
|
| 723 |
-
|
| 724 |
-
# Send greeting to client
|
| 725 |
-
response_data = {
|
| 726 |
-
"type": "llm_response",
|
| 727 |
-
"text": greeting_text,
|
| 728 |
-
"emotion": "Neutral",
|
| 729 |
-
"intensity": 0.5,
|
| 730 |
-
"is_greeting": True
|
| 731 |
-
}
|
| 732 |
-
|
| 733 |
-
# Add audio/visemes only if TTS succeeded
|
| 734 |
-
if audio_url and visemes:
|
| 735 |
-
response_data["audio_url"] = audio_url
|
| 736 |
-
response_data["visemes"] = visemes
|
| 737 |
-
else:
|
| 738 |
-
response_data["text_only"] = True
|
| 739 |
-
print(f"[Greeting] π Sending text-only (no TTS)")
|
| 740 |
-
|
| 741 |
-
await websocket.send_json(response_data)
|
| 742 |
-
|
| 743 |
-
# Save greeting to history
|
| 744 |
-
conn = sqlite3.connect(DB_PATH)
|
| 745 |
-
cursor = conn.cursor()
|
| 746 |
-
cursor.execute(
|
| 747 |
-
"INSERT INTO messages (session_id, role, content, emotion) VALUES (?, ?, ?, ?)",
|
| 748 |
-
(session_id, "assistant", greeting_text, "Neutral")
|
| 749 |
-
)
|
| 750 |
-
conn.commit()
|
| 751 |
-
conn.close()
|
| 752 |
-
|
| 753 |
-
print(f"[Greeting] β
Sent to {username}")
|
| 754 |
-
|
| 755 |
-
except Exception as greeting_err:
|
| 756 |
-
print(f"[Greeting] β Error: {greeting_err}")
|
| 757 |
-
import traceback
|
| 758 |
-
traceback.print_exc()
|
| 759 |
-
|
| 760 |
-
try:
|
| 761 |
-
await websocket.send_json({
|
| 762 |
-
"type": "error",
|
| 763 |
-
"message": "Greeting failed - avatar service unavailable"
|
| 764 |
-
})
|
| 765 |
-
except:
|
| 766 |
-
pass
|
| 767 |
-
|
| 768 |
-
# ============ VIDEO FRAME - UPDATED WITH PROBABILITIES ============
|
| 769 |
-
elif msg_type == "video_frame":
|
| 770 |
-
try:
|
| 771 |
-
# Decode base64 image
|
| 772 |
-
img_data = base64.b64decode(data["frame"].split(",")[1])
|
| 773 |
-
img = Image.open(io.BytesIO(img_data))
|
| 774 |
-
frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
| 775 |
-
|
| 776 |
-
# Process face emotion
|
| 777 |
-
try:
|
| 778 |
-
processed_frame, result = face_processor.process_frame(frame)
|
| 779 |
-
face_emotion = face_processor.get_last_emotion() or "Neutral"
|
| 780 |
-
face_confidence = face_processor.get_last_confidence() or 0.0
|
| 781 |
-
face_probs = face_processor.get_last_probs()
|
| 782 |
-
face_quality = face_processor.get_last_quality() if hasattr(face_processor, 'get_last_quality') else 0.5
|
| 783 |
-
except Exception as proc_err:
|
| 784 |
-
print(f"[FaceProcessor] Error: {proc_err}")
|
| 785 |
-
face_emotion = "Neutral"
|
| 786 |
-
face_confidence = 0.0
|
| 787 |
-
face_probs = np.array([0.25, 0.25, 0.25, 0.25])
|
| 788 |
-
face_quality = 0.0
|
| 789 |
-
|
| 790 |
-
# Send face emotion to frontend with probabilities
|
| 791 |
-
await websocket.send_json({
|
| 792 |
-
"type": "face_emotion",
|
| 793 |
-
"emotion": face_emotion,
|
| 794 |
-
"confidence": face_confidence,
|
| 795 |
-
"probabilities": face_probs.tolist(),
|
| 796 |
-
"quality": face_quality
|
| 797 |
-
})
|
| 798 |
-
|
| 799 |
-
except Exception as e:
|
| 800 |
-
print(f"[Video] Error: {e}")
|
| 801 |
-
|
| 802 |
-
# ============ AUDIO CHUNK ============
|
| 803 |
-
elif msg_type == "audio_chunk":
|
| 804 |
-
try:
|
| 805 |
-
audio_data = base64.b64decode(data["audio"])
|
| 806 |
-
audio_buffer.append(audio_data)
|
| 807 |
-
|
| 808 |
-
if len(audio_buffer) >= 5:
|
| 809 |
-
voice_probs, voice_emotion = voice_worker.get_probs()
|
| 810 |
-
await websocket.send_json({
|
| 811 |
-
"type": "voice_emotion",
|
| 812 |
-
"emotion": voice_emotion
|
| 813 |
-
})
|
| 814 |
-
audio_buffer = audio_buffer[-3:]
|
| 815 |
-
|
| 816 |
-
except Exception as e:
|
| 817 |
-
print(f"[Audio] Error: {e}")
|
| 818 |
-
|
| 819 |
-
# ============ USER FINISHED SPEAKING (ENHANCED LOGGING) ============
|
| 820 |
-
elif msg_type == "speech_end":
|
| 821 |
-
transcription = data.get("text", "").strip()
|
| 822 |
-
|
| 823 |
-
print(f"\n{'='*80}")
|
| 824 |
-
print(f"[Speech End] π€ USER FINISHED SPEAKING: {username}")
|
| 825 |
-
print(f"{'='*80}")
|
| 826 |
-
print(f"[Transcription] '{transcription}'")
|
| 827 |
-
|
| 828 |
-
# Filter short/meaningless
|
| 829 |
-
if len(transcription) < 2:
|
| 830 |
-
print(f"[Filter] βοΈ Skipped: Too short ({len(transcription)} chars)")
|
| 831 |
-
continue
|
| 832 |
-
|
| 833 |
-
hallucinations = {"thank you", "thanks", "okay", "ok", "you", "yeah", "yep"}
|
| 834 |
-
if transcription.lower().strip('.,!?') in hallucinations:
|
| 835 |
-
print(f"[Filter] βοΈ Skipped: Hallucination detected ('{transcription}')")
|
| 836 |
-
continue
|
| 837 |
-
|
| 838 |
-
# Save user message
|
| 839 |
-
conn = sqlite3.connect(DB_PATH)
|
| 840 |
-
cursor = conn.cursor()
|
| 841 |
-
cursor.execute(
|
| 842 |
-
"INSERT INTO messages (session_id, role, content) VALUES (?, ?, ?)",
|
| 843 |
-
(session_id, "user", transcription)
|
| 844 |
-
)
|
| 845 |
-
conn.commit()
|
| 846 |
-
conn.close()
|
| 847 |
-
|
| 848 |
-
try:
|
| 849 |
-
# ========== EMOTION DETECTION PIPELINE (ENHANCED LOGGING) ==========
|
| 850 |
-
print(f"\n[Pipeline] π Starting emotion analysis pipeline...")
|
| 851 |
-
print(f"{'β'*80}")
|
| 852 |
-
|
| 853 |
-
# Step 1: Get face emotion
|
| 854 |
-
print(f"[Step 1/4] πΈ FACIAL EXPRESSION ANALYSIS")
|
| 855 |
-
face_emotion = face_processor.get_last_emotion()
|
| 856 |
-
face_confidence = face_processor.get_last_confidence()
|
| 857 |
-
face_quality = face_processor.get_last_quality() if hasattr(face_processor, 'get_last_quality') else 0.5
|
| 858 |
-
|
| 859 |
-
# Create emotion probabilities
|
| 860 |
-
emotion_map = {'Neutral': 0, 'Happy': 1, 'Sad': 2, 'Angry': 3}
|
| 861 |
-
face_probs = np.array([0.25, 0.25, 0.25, 0.25], dtype=np.float32)
|
| 862 |
-
if face_emotion in emotion_map:
|
| 863 |
-
face_idx = emotion_map[face_emotion]
|
| 864 |
-
face_probs[face_idx] = face_confidence
|
| 865 |
-
face_probs = face_probs / face_probs.sum()
|
| 866 |
-
|
| 867 |
-
print(f" Result: {face_emotion}")
|
| 868 |
-
print(f" Confidence: {face_confidence:.3f}")
|
| 869 |
-
print(f" Quality Score: {face_quality:.3f}")
|
| 870 |
-
print(f" Distribution: Neutral={face_probs[0]:.3f} | Happy={face_probs[1]:.3f} | Sad={face_probs[2]:.3f} | Angry={face_probs[3]:.3f}")
|
| 871 |
-
|
| 872 |
-
# Step 2: Get voice emotion
|
| 873 |
-
print(f"\n[Step 2/4] π€ VOICE TONE ANALYSIS")
|
| 874 |
-
voice_probs, voice_emotion = voice_worker.get_probs()
|
| 875 |
-
voice_state = voice_worker.get_state()
|
| 876 |
-
voice_active = voice_state.get('speech_active', False)
|
| 877 |
-
voice_inferences = voice_state.get('inference_count', 0)
|
| 878 |
-
voice_skipped = voice_state.get('skipped_inferences', 0)
|
| 879 |
-
|
| 880 |
-
print(f" {'β
ACTIVELY PROCESSING' if voice_active else 'β οΈ IDLE (no recent speech)'}")
|
| 881 |
-
print(f" Result: {voice_emotion}")
|
| 882 |
-
print(f" Distribution: Neutral={voice_probs[0]:.3f} | Happy={voice_probs[1]:.3f} | Sad={voice_probs[2]:.3f} | Angry={voice_probs[3]:.3f}")
|
| 883 |
-
print(f" Inferences completed: {voice_inferences}")
|
| 884 |
-
print(f" Skipped (silence optimization): {voice_skipped}")
|
| 885 |
-
efficiency = (voice_inferences / (voice_inferences + voice_skipped) * 100) if (voice_inferences + voice_skipped) > 0 else 0
|
| 886 |
-
print(f" Processing efficiency: {efficiency:.1f}%")
|
| 887 |
-
|
| 888 |
-
# Step 3: Analyze text sentiment
|
| 889 |
-
print(f"\n[Step 3/4] π¬ TEXT SENTIMENT ANALYSIS")
|
| 890 |
-
print(f" β
Using Whisper transcription")
|
| 891 |
-
text_analyzer.analyze(transcription)
|
| 892 |
-
text_probs, _ = text_analyzer.get_probs()
|
| 893 |
-
text_emotion = ['Neutral', 'Happy', 'Sad', 'Angry'][int(np.argmax(text_probs))]
|
| 894 |
-
|
| 895 |
-
print(f" Result: {text_emotion}")
|
| 896 |
-
print(f" Distribution: Neutral={text_probs[0]:.3f} | Happy={text_probs[1]:.3f} | Sad={text_probs[2]:.3f} | Angry={text_probs[3]:.3f}")
|
| 897 |
-
print(f" Text length: {len(transcription)} characters")
|
| 898 |
-
|
| 899 |
-
# Step 4: Calculate fusion weights
|
| 900 |
-
print(f"\n[Step 4/4] βοΈ MULTI-MODAL FUSION")
|
| 901 |
-
base_weights = {
|
| 902 |
-
'face': fusion_engine.alpha_face,
|
| 903 |
-
'voice': fusion_engine.alpha_voice,
|
| 904 |
-
'text': fusion_engine.alpha_text
|
| 905 |
-
}
|
| 906 |
-
|
| 907 |
-
# Adjust weights based on quality/confidence
|
| 908 |
-
adjusted_weights = base_weights.copy()
|
| 909 |
-
adjustments_made = []
|
| 910 |
-
|
| 911 |
-
# Reduce face weight if quality is poor
|
| 912 |
-
if face_quality < 0.5:
|
| 913 |
-
adjusted_weights['face'] *= 0.7
|
| 914 |
-
adjustments_made.append(f"Face weight reduced (low quality: {face_quality:.3f})")
|
| 915 |
-
|
| 916 |
-
# Reduce voice weight if not active
|
| 917 |
-
if not voice_active:
|
| 918 |
-
adjusted_weights['voice'] *= 0.5
|
| 919 |
-
adjustments_made.append(f"Voice weight reduced (no recent speech)")
|
| 920 |
-
|
| 921 |
-
# Reduce text weight if very short
|
| 922 |
-
if len(transcription) < 10:
|
| 923 |
-
adjusted_weights['text'] *= 0.7
|
| 924 |
-
adjustments_made.append(f"Text weight reduced (short input: {len(transcription)} chars)")
|
| 925 |
-
|
| 926 |
-
# Normalize weights to sum to 1.0
|
| 927 |
-
total_weight = sum(adjusted_weights.values())
|
| 928 |
-
final_weights = {k: v/total_weight for k, v in adjusted_weights.items()}
|
| 929 |
-
|
| 930 |
-
print(f" Base weights: Face={base_weights['face']:.3f} | Voice={base_weights['voice']:.3f} | Text={base_weights['text']:.3f}")
|
| 931 |
-
if adjustments_made:
|
| 932 |
-
print(f" Adjustments:")
|
| 933 |
-
for adj in adjustments_made:
|
| 934 |
-
print(f" - {adj}")
|
| 935 |
-
print(f" Final weights: Face={final_weights['face']:.3f} | Voice={final_weights['voice']:.3f} | Text={final_weights['text']:.3f}")
|
| 936 |
-
|
| 937 |
-
# Calculate weighted fusion
|
| 938 |
-
fused_probs = (
|
| 939 |
-
final_weights['face'] * face_probs +
|
| 940 |
-
final_weights['voice'] * voice_probs +
|
| 941 |
-
final_weights['text'] * text_probs
|
| 942 |
-
)
|
| 943 |
-
fused_probs = fused_probs / (np.sum(fused_probs) + 1e-8)
|
| 944 |
-
|
| 945 |
-
fused_emotion, intensity = fusion_engine.fuse(face_probs, voice_probs, text_probs)
|
| 946 |
-
|
| 947 |
-
# Calculate fusion accuracy metrics
|
| 948 |
-
agreement_count = sum([
|
| 949 |
-
face_emotion == fused_emotion,
|
| 950 |
-
voice_emotion == fused_emotion,
|
| 951 |
-
text_emotion == fused_emotion
|
| 952 |
-
])
|
| 953 |
-
agreement_score = agreement_count / 3.0
|
| 954 |
-
|
| 955 |
-
# Check for conflicts
|
| 956 |
-
all_same = (face_emotion == voice_emotion == text_emotion)
|
| 957 |
-
has_conflict = len({face_emotion, voice_emotion, text_emotion}) == 3
|
| 958 |
-
|
| 959 |
-
print(f"\n {'β'*76}")
|
| 960 |
-
print(f" FUSION RESULTS:")
|
| 961 |
-
print(f" {'β'*76}")
|
| 962 |
-
print(f" Input emotions:")
|
| 963 |
-
print(f" Face: {face_emotion:7s} (confidence={face_probs[emotion_map.get(face_emotion, 0)]:.3f}, weight={final_weights['face']:.3f})")
|
| 964 |
-
print(f" Voice: {voice_emotion:7s} (confidence={voice_probs[emotion_map.get(voice_emotion, 0)]:.3f}, weight={final_weights['voice']:.3f})")
|
| 965 |
-
print(f" Text: {text_emotion:7s} (confidence={text_probs[emotion_map.get(text_emotion, 0)]:.3f}, weight={final_weights['text']:.3f})")
|
| 966 |
-
print(f" {'β'*76}")
|
| 967 |
-
print(f" FUSED EMOTION: {fused_emotion}")
|
| 968 |
-
print(f" Intensity: {intensity:.3f}")
|
| 969 |
-
print(f" Fused distribution: Neutral={fused_probs[0]:.3f} | Happy={fused_probs[1]:.3f} | Sad={fused_probs[2]:.3f} | Angry={fused_probs[3]:.3f}")
|
| 970 |
-
print(f" {'β'*76}")
|
| 971 |
-
print(f" Agreement: {agreement_count}/3 modalities ({agreement_score*100:.1f}%)")
|
| 972 |
-
|
| 973 |
-
if all_same:
|
| 974 |
-
print(f" Status: β
Perfect agreement - all modalities aligned")
|
| 975 |
-
elif has_conflict:
|
| 976 |
-
print(f" Status: β οΈ Full conflict - weighted fusion resolved disagreement")
|
| 977 |
-
else:
|
| 978 |
-
print(f" Status: π Partial agreement - majority vote with confidence weighting")
|
| 979 |
-
|
| 980 |
-
print(f" {'β'*76}")
|
| 981 |
-
|
| 982 |
-
# ========== LLM INPUT PREPARATION ==========
|
| 983 |
-
print(f"\n[LLM Input] π§ Preparing context for language model...")
|
| 984 |
-
|
| 985 |
-
# Language instruction
|
| 986 |
-
user_language = user_preferences.get("language", "en")
|
| 987 |
-
|
| 988 |
-
context_prefix = ""
|
| 989 |
-
if user_summary:
|
| 990 |
-
context_prefix = f"[User context for {username}: {user_summary}]\n\n"
|
| 991 |
-
print(f"[LLM Input] - User context: YES ({len(user_summary)} chars)")
|
| 992 |
-
else:
|
| 993 |
-
print(f"[LLM Input] - User context: NO (new user)")
|
| 994 |
-
|
| 995 |
-
# Add language instruction
|
| 996 |
-
if user_language == "nl":
|
| 997 |
-
context_prefix += "[BELANGRIJK: Antwoord ALTIJD in het Nederlands!]\n\n"
|
| 998 |
-
print(f"[LLM Input] - Language: Dutch (Nederlands)")
|
| 999 |
-
else:
|
| 1000 |
-
context_prefix += "[IMPORTANT: ALWAYS respond in English!]\n\n"
|
| 1001 |
-
print(f"[LLM Input] - Language: English")
|
| 1002 |
-
|
| 1003 |
-
full_llm_input = context_prefix + transcription
|
| 1004 |
-
|
| 1005 |
-
print(f"[LLM Input] - Fused emotion: {fused_emotion}")
|
| 1006 |
-
print(f"[LLM Input] - Face emotion: {face_emotion}")
|
| 1007 |
-
print(f"[LLM Input] - Voice emotion: {voice_emotion}")
|
| 1008 |
-
print(f"[LLM Input] - Intensity: {intensity:.3f}")
|
| 1009 |
-
print(f"[LLM Input] - User text: '{transcription}'")
|
| 1010 |
-
print(f"[LLM Input] - Full prompt length: {len(full_llm_input)} chars")
|
| 1011 |
-
|
| 1012 |
-
if len(context_prefix) > 50:
|
| 1013 |
-
print(f"[LLM Input] - Context preview: '{context_prefix[:100]}...'")
|
| 1014 |
-
|
| 1015 |
-
# Generate LLM response
|
| 1016 |
-
print(f"\n[LLM] π€ Generating response...")
|
| 1017 |
-
response_text = llm_generator.generate_response(
|
| 1018 |
-
fused_emotion, face_emotion, voice_emotion,
|
| 1019 |
-
full_llm_input, force=True, intensity=intensity
|
| 1020 |
-
)
|
| 1021 |
-
|
| 1022 |
-
print(f"[LLM] β
Response generated: '{response_text}'")
|
| 1023 |
-
|
| 1024 |
-
# Save assistant message
|
| 1025 |
-
conn = sqlite3.connect(DB_PATH)
|
| 1026 |
-
cursor = conn.cursor()
|
| 1027 |
-
cursor.execute(
|
| 1028 |
-
"INSERT INTO messages (session_id, role, content, emotion) VALUES (?, ?, ?, ?)",
|
| 1029 |
-
(session_id, "assistant", response_text, fused_emotion)
|
| 1030 |
-
)
|
| 1031 |
-
conn.commit()
|
| 1032 |
-
conn.close()
|
| 1033 |
-
|
| 1034 |
-
# ========== SEND TO AVATAR FOR TTS ==========
|
| 1035 |
-
print(f"\n[TTS] π Sending to avatar backend...")
|
| 1036 |
-
|
| 1037 |
-
try:
|
| 1038 |
-
voice_preference = user_preferences.get("voice", "female")
|
| 1039 |
-
language_preference = user_preferences.get("language", "en")
|
| 1040 |
-
|
| 1041 |
-
print(f"[TTS] - Voice: {voice_preference}")
|
| 1042 |
-
print(f"[TTS] - Language: {language_preference}")
|
| 1043 |
-
print(f"[TTS] - Text: '{response_text}'")
|
| 1044 |
-
|
| 1045 |
-
avatar_response = requests.post(
|
| 1046 |
-
f"{AVATAR_API}/speak",
|
| 1047 |
-
data={
|
| 1048 |
-
"text": response_text,
|
| 1049 |
-
"voice": voice_preference,
|
| 1050 |
-
"language": language_preference
|
| 1051 |
-
},
|
| 1052 |
-
timeout=45
|
| 1053 |
-
)
|
| 1054 |
-
avatar_response.raise_for_status()
|
| 1055 |
-
avatar_data = avatar_response.json()
|
| 1056 |
-
|
| 1057 |
-
print(f"[TTS] β
Avatar TTS generated")
|
| 1058 |
-
print(f"[TTS] - Audio URL: {avatar_data.get('audio_url', 'N/A')}")
|
| 1059 |
-
print(f"[TTS] - Visemes: {len(avatar_data.get('visemes', []))} keyframes")
|
| 1060 |
-
|
| 1061 |
-
await websocket.send_json({
|
| 1062 |
-
"type": "llm_response",
|
| 1063 |
-
"text": response_text,
|
| 1064 |
-
"emotion": fused_emotion,
|
| 1065 |
-
"intensity": intensity,
|
| 1066 |
-
"audio_url": avatar_data.get("audio_url"),
|
| 1067 |
-
"visemes": avatar_data.get("visemes")
|
| 1068 |
-
})
|
| 1069 |
-
|
| 1070 |
-
print(f"[Pipeline] β
Complete response sent to {username}")
|
| 1071 |
-
|
| 1072 |
-
except requests.exceptions.ConnectionError:
|
| 1073 |
-
print(f"[TTS] β οΈ Avatar service not available - sending text-only")
|
| 1074 |
-
await websocket.send_json({
|
| 1075 |
-
"type": "llm_response",
|
| 1076 |
-
"text": response_text,
|
| 1077 |
-
"emotion": fused_emotion,
|
| 1078 |
-
"intensity": intensity,
|
| 1079 |
-
"text_only": True
|
| 1080 |
-
})
|
| 1081 |
-
|
| 1082 |
-
except Exception as avatar_err:
|
| 1083 |
-
print(f"[TTS] β Avatar error: {avatar_err}")
|
| 1084 |
-
await websocket.send_json({
|
| 1085 |
-
"type": "llm_response",
|
| 1086 |
-
"text": response_text,
|
| 1087 |
-
"emotion": fused_emotion,
|
| 1088 |
-
"intensity": intensity,
|
| 1089 |
-
"error": "Avatar TTS failed",
|
| 1090 |
-
"text_only": True
|
| 1091 |
-
})
|
| 1092 |
-
|
| 1093 |
-
print(f"{'='*80}\n")
|
| 1094 |
-
|
| 1095 |
-
except Exception as e:
|
| 1096 |
-
print(f"[Pipeline] β Error in emotion processing: {e}")
|
| 1097 |
-
import traceback
|
| 1098 |
-
traceback.print_exc()
|
| 1099 |
-
|
| 1100 |
-
except WebSocketDisconnect:
|
| 1101 |
-
print(f"[WebSocket] β {username} disconnected (close/refresh)")
|
| 1102 |
-
|
| 1103 |
-
except Exception as e:
|
| 1104 |
-
print(f"[WebSocket] β {username} error: {e}")
|
| 1105 |
-
import traceback
|
| 1106 |
-
traceback.print_exc()
|
| 1107 |
-
|
| 1108 |
-
finally:
|
| 1109 |
-
# Generate summary on disconnect
|
| 1110 |
-
if session_data and session_id and user_id:
|
| 1111 |
-
print(f"[WebSocket] π Generating summary for {username} (session ended)...")
|
| 1112 |
-
try:
|
| 1113 |
-
summary = await generate_session_summary(session_id, user_id)
|
| 1114 |
-
if summary:
|
| 1115 |
-
print(f"[Summary] β
Saved for {username}")
|
| 1116 |
-
else:
|
| 1117 |
-
print(f"[Summary] βοΈ Skipped (not enough messages)")
|
| 1118 |
-
except Exception as summary_err:
|
| 1119 |
-
print(f"[Summary] β Error for {username}: {summary_err}")
|
| 1120 |
-
|
| 1121 |
-
if __name__ == "__main__":
|
| 1122 |
-
import uvicorn
|
| 1123 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
| 1 |
+
"""MrrrMe Backend WebSocket Server - ENHANCED LOGGING VERSION"""
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
|
| 5 |
+
# ===== SET CACHE DIRECTORIES FIRST =====
|
| 6 |
+
os.environ['HF_HOME'] = '/tmp/huggingface'
|
| 7 |
+
os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers'
|
| 8 |
+
os.environ['HF_HUB_CACHE'] = '/tmp/huggingface/hub'
|
| 9 |
+
os.environ['TORCH_HOME'] = '/tmp/torch'
|
| 10 |
+
os.makedirs('/tmp/huggingface', exist_ok=True)
|
| 11 |
+
os.makedirs('/tmp/transformers', exist_ok=True)
|
| 12 |
+
os.makedirs('/tmp/huggingface/hub', exist_ok=True)
|
| 13 |
+
os.makedirs('/tmp/torch', exist_ok=True)
|
| 14 |
+
|
| 15 |
+
# ===== GPU FIX: Patch TensorBoard =====
|
| 16 |
+
class DummySummaryWriter:
|
| 17 |
+
def __init__(self, *args, **kwargs): pass
|
| 18 |
+
def __getattr__(self, name): return lambda *args, **kwargs: None
|
| 19 |
+
|
| 20 |
+
try:
|
| 21 |
+
import tensorboardX
|
| 22 |
+
tensorboardX.SummaryWriter = DummySummaryWriter
|
| 23 |
+
except: pass
|
| 24 |
+
|
| 25 |
+
# ===== GPU FIX: Patch Logging to redirect /work paths =====
|
| 26 |
+
import logging
|
| 27 |
+
_original_FileHandler = logging.FileHandler
|
| 28 |
+
|
| 29 |
+
class RedirectingFileHandler(_original_FileHandler):
|
| 30 |
+
def __init__(self, filename, mode='a', encoding=None, delay=False, errors=None):
|
| 31 |
+
if isinstance(filename, str) and filename.startswith('/work'):
|
| 32 |
+
filename = '/tmp/openface_log.txt'
|
| 33 |
+
os.makedirs(os.path.dirname(filename) if os.path.dirname(filename) else '/tmp', exist_ok=True)
|
| 34 |
+
super().__init__(filename, mode, encoding, delay, errors)
|
| 35 |
+
|
| 36 |
+
logging.FileHandler = RedirectingFileHandler
|
| 37 |
+
|
| 38 |
+
# Now import everything else
|
| 39 |
+
import asyncio
|
| 40 |
+
import json
|
| 41 |
+
import base64
|
| 42 |
+
import numpy as np
|
| 43 |
+
import cv2
|
| 44 |
+
import io
|
| 45 |
+
import torch
|
| 46 |
+
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, HTTPException
|
| 47 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 48 |
+
from pydantic import BaseModel
|
| 49 |
+
import requests
|
| 50 |
+
from PIL import Image
|
| 51 |
+
from typing import Optional
|
| 52 |
+
import sqlite3
|
| 53 |
+
import secrets
|
| 54 |
+
import hashlib
|
| 55 |
+
from datetime import datetime
|
| 56 |
+
|
| 57 |
+
# Check GPU
|
| 58 |
+
if not torch.cuda.is_available():
|
| 59 |
+
print("[Backend] β οΈ No GPU detected - using CPU mode")
|
| 60 |
+
else:
|
| 61 |
+
print(f"[Backend] β
GPU available: {torch.cuda.get_device_name(0)}")
|
| 62 |
+
|
| 63 |
+
app = FastAPI()
|
| 64 |
+
|
| 65 |
+
# CORS for browser access
|
| 66 |
+
app.add_middleware(
|
| 67 |
+
CORSMiddleware,
|
| 68 |
+
allow_origins=["*"],
|
| 69 |
+
allow_credentials=True,
|
| 70 |
+
allow_methods=["*"],
|
| 71 |
+
allow_headers=["*"],
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Global model variables (will be loaded after startup)
|
| 75 |
+
face_processor = None
|
| 76 |
+
text_analyzer = None
|
| 77 |
+
whisper_worker = None
|
| 78 |
+
voice_worker = None
|
| 79 |
+
llm_generator = None
|
| 80 |
+
fusion_engine = None
|
| 81 |
+
models_ready = False
|
| 82 |
+
|
| 83 |
+
# Avatar backend URL - environment aware
|
| 84 |
+
def get_avatar_api_url():
|
| 85 |
+
"""Get correct avatar API URL based on environment"""
|
| 86 |
+
# For Hugging Face Spaces, use same host
|
| 87 |
+
if os.path.exists('/.dockerenv') or os.environ.get('SPACE_ID'):
|
| 88 |
+
# Running in Docker/HF Spaces - use internal networking
|
| 89 |
+
return "http://127.0.0.1:8765"
|
| 90 |
+
else:
|
| 91 |
+
# Local development
|
| 92 |
+
return "http://localhost:8765"
|
| 93 |
+
|
| 94 |
+
AVATAR_API = get_avatar_api_url()
|
| 95 |
+
print(f"[Backend] π Avatar API URL: {AVATAR_API}")
|
| 96 |
+
|
| 97 |
+
# ===== AUTHENTICATION & DATABASE =====
|
| 98 |
+
# Use /data for Hugging Face Spaces (persistent) or /tmp for local dev
|
| 99 |
+
if os.path.exists('/data'):
|
| 100 |
+
DB_PATH = "/data/mrrrme_users.db"
|
| 101 |
+
print("[Backend] π Using persistent storage: /data/mrrrme_users.db")
|
| 102 |
+
else:
|
| 103 |
+
DB_PATH = "/tmp/mrrrme_users.db"
|
| 104 |
+
print("[Backend] β οΈ Using ephemeral storage: /tmp/mrrrme_users.db (will reset on rebuild!)")
|
| 105 |
+
print("[Backend] β οΈ To persist data, enable persistent storage in HF Spaces settings")
|
| 106 |
+
|
| 107 |
+
class SignupRequest(BaseModel):
|
| 108 |
+
username: str
|
| 109 |
+
password: str
|
| 110 |
+
|
| 111 |
+
class LoginRequest(BaseModel):
|
| 112 |
+
username: str
|
| 113 |
+
password: str
|
| 114 |
+
|
| 115 |
+
def init_db():
|
| 116 |
+
conn = sqlite3.connect(DB_PATH)
|
| 117 |
+
cursor = conn.cursor()
|
| 118 |
+
|
| 119 |
+
cursor.execute("""
|
| 120 |
+
CREATE TABLE IF NOT EXISTS users (
|
| 121 |
+
user_id TEXT PRIMARY KEY,
|
| 122 |
+
username TEXT UNIQUE NOT NULL,
|
| 123 |
+
password_hash TEXT NOT NULL,
|
| 124 |
+
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
| 125 |
+
)
|
| 126 |
+
""")
|
| 127 |
+
|
| 128 |
+
cursor.execute("""
|
| 129 |
+
CREATE TABLE IF NOT EXISTS sessions (
|
| 130 |
+
session_id TEXT PRIMARY KEY,
|
| 131 |
+
user_id TEXT NOT NULL,
|
| 132 |
+
token TEXT UNIQUE NOT NULL,
|
| 133 |
+
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
| 134 |
+
is_active BOOLEAN DEFAULT 1
|
| 135 |
+
)
|
| 136 |
+
""")
|
| 137 |
+
|
| 138 |
+
cursor.execute("""
|
| 139 |
+
CREATE TABLE IF NOT EXISTS messages (
|
| 140 |
+
message_id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 141 |
+
session_id TEXT NOT NULL,
|
| 142 |
+
role TEXT NOT NULL,
|
| 143 |
+
content TEXT NOT NULL,
|
| 144 |
+
emotion TEXT,
|
| 145 |
+
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
| 146 |
+
)
|
| 147 |
+
""")
|
| 148 |
+
|
| 149 |
+
cursor.execute("""
|
| 150 |
+
CREATE TABLE IF NOT EXISTS user_summaries (
|
| 151 |
+
user_id TEXT PRIMARY KEY,
|
| 152 |
+
summary_text TEXT NOT NULL,
|
| 153 |
+
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
| 154 |
+
)
|
| 155 |
+
""")
|
| 156 |
+
|
| 157 |
+
conn.commit()
|
| 158 |
+
conn.close()
|
| 159 |
+
|
| 160 |
+
init_db()
|
| 161 |
+
|
| 162 |
+
def hash_password(pw: str) -> str:
|
| 163 |
+
return hashlib.sha256(pw.encode()).hexdigest()
|
| 164 |
+
|
| 165 |
+
@app.post("/api/signup")
|
| 166 |
+
async def signup(req: SignupRequest):
|
| 167 |
+
conn = sqlite3.connect(DB_PATH)
|
| 168 |
+
cursor = conn.cursor()
|
| 169 |
+
|
| 170 |
+
try:
|
| 171 |
+
user_id = secrets.token_urlsafe(16)
|
| 172 |
+
cursor.execute(
|
| 173 |
+
"INSERT INTO users (user_id, username, password_hash) VALUES (?, ?, ?)",
|
| 174 |
+
(user_id, req.username, hash_password(req.password))
|
| 175 |
+
)
|
| 176 |
+
conn.commit()
|
| 177 |
+
conn.close()
|
| 178 |
+
return {"success": True, "message": "Account created!"}
|
| 179 |
+
except sqlite3.IntegrityError:
|
| 180 |
+
conn.close()
|
| 181 |
+
raise HTTPException(status_code=400, detail="Username already exists")
|
| 182 |
+
|
| 183 |
+
@app.post("/api/login")
|
| 184 |
+
async def login(req: LoginRequest):
|
| 185 |
+
conn = sqlite3.connect(DB_PATH)
|
| 186 |
+
cursor = conn.cursor()
|
| 187 |
+
|
| 188 |
+
cursor.execute(
|
| 189 |
+
"SELECT user_id, username FROM users WHERE username = ? AND password_hash = ?",
|
| 190 |
+
(req.username, hash_password(req.password))
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
result = cursor.fetchone()
|
| 194 |
+
|
| 195 |
+
if not result:
|
| 196 |
+
conn.close()
|
| 197 |
+
raise HTTPException(status_code=401, detail="Invalid credentials")
|
| 198 |
+
|
| 199 |
+
user_id, username = result
|
| 200 |
+
|
| 201 |
+
session_id = secrets.token_urlsafe(16)
|
| 202 |
+
token = secrets.token_urlsafe(32)
|
| 203 |
+
|
| 204 |
+
cursor.execute(
|
| 205 |
+
"INSERT INTO sessions (session_id, user_id, token) VALUES (?, ?, ?)",
|
| 206 |
+
(session_id, user_id, token)
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
cursor.execute(
|
| 210 |
+
"SELECT summary_text FROM user_summaries WHERE user_id = ?",
|
| 211 |
+
(user_id,)
|
| 212 |
+
)
|
| 213 |
+
summary_row = cursor.fetchone()
|
| 214 |
+
summary = summary_row[0] if summary_row else None
|
| 215 |
+
|
| 216 |
+
conn.commit()
|
| 217 |
+
conn.close()
|
| 218 |
+
|
| 219 |
+
return {
|
| 220 |
+
"success": True,
|
| 221 |
+
"token": token,
|
| 222 |
+
"username": username,
|
| 223 |
+
"user_id": user_id,
|
| 224 |
+
"summary": summary
|
| 225 |
+
}
|
| 226 |
+
|
| 227 |
+
class LogoutRequest(BaseModel):
|
| 228 |
+
token: str
|
| 229 |
+
|
| 230 |
+
@app.post("/api/logout")
|
| 231 |
+
async def logout(req: LogoutRequest):
|
| 232 |
+
conn = sqlite3.connect(DB_PATH)
|
| 233 |
+
cursor = conn.cursor()
|
| 234 |
+
|
| 235 |
+
# Get session info before closing
|
| 236 |
+
cursor.execute(
|
| 237 |
+
"SELECT session_id, user_id FROM sessions WHERE token = ? AND is_active = 1",
|
| 238 |
+
(req.token,)
|
| 239 |
+
)
|
| 240 |
+
result = cursor.fetchone()
|
| 241 |
+
|
| 242 |
+
if result:
|
| 243 |
+
session_id, user_id = result
|
| 244 |
+
|
| 245 |
+
# Mark session as inactive
|
| 246 |
+
cursor.execute(
|
| 247 |
+
"UPDATE sessions SET is_active = 0 WHERE token = ?",
|
| 248 |
+
(req.token,)
|
| 249 |
+
)
|
| 250 |
+
conn.commit()
|
| 251 |
+
conn.close()
|
| 252 |
+
|
| 253 |
+
# Generate summary on explicit logout
|
| 254 |
+
print(f"[Logout] π Generating summary for user {user_id}...")
|
| 255 |
+
summary = await generate_session_summary(session_id, user_id)
|
| 256 |
+
if summary:
|
| 257 |
+
print(f"[Logout] β
Summary generated")
|
| 258 |
+
|
| 259 |
+
return {"success": True, "message": "Logged out successfully"}
|
| 260 |
+
else:
|
| 261 |
+
conn.close()
|
| 262 |
+
return {"success": True, "message": "Session already closed"}
|
| 263 |
+
|
| 264 |
+
async def generate_session_summary(session_id: str, user_id: str):
|
| 265 |
+
"""Generate AI summary of conversation for THIS specific user"""
|
| 266 |
+
conn = sqlite3.connect(DB_PATH)
|
| 267 |
+
cursor = conn.cursor()
|
| 268 |
+
|
| 269 |
+
# Verify session belongs to user
|
| 270 |
+
cursor.execute(
|
| 271 |
+
"SELECT user_id FROM sessions WHERE session_id = ?",
|
| 272 |
+
(session_id,)
|
| 273 |
+
)
|
| 274 |
+
session_owner = cursor.fetchone()
|
| 275 |
+
|
| 276 |
+
if not session_owner or session_owner[0] != user_id:
|
| 277 |
+
print(f"[Summary] β Security error: session {session_id} doesn't belong to user {user_id}")
|
| 278 |
+
conn.close()
|
| 279 |
+
return None
|
| 280 |
+
|
| 281 |
+
# Get messages from this session
|
| 282 |
+
cursor.execute(
|
| 283 |
+
"SELECT role, content, emotion FROM messages WHERE session_id = ? ORDER BY timestamp ASC",
|
| 284 |
+
(session_id,)
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
messages = cursor.fetchall()
|
| 288 |
+
|
| 289 |
+
# Get username for better logging
|
| 290 |
+
cursor.execute("SELECT username FROM users WHERE user_id = ?", (user_id,))
|
| 291 |
+
username_row = cursor.fetchone()
|
| 292 |
+
username = username_row[0] if username_row else user_id
|
| 293 |
+
|
| 294 |
+
conn.close()
|
| 295 |
+
|
| 296 |
+
if len(messages) < 3:
|
| 297 |
+
print(f"[Summary] βοΈ Skipped for {username} (only {len(messages)} messages)")
|
| 298 |
+
return None
|
| 299 |
+
|
| 300 |
+
conversation = ""
|
| 301 |
+
for role, content, emotion in messages:
|
| 302 |
+
speaker = "User" if role == "user" else "AI"
|
| 303 |
+
emo_tag = f" [{emotion}]" if emotion else ""
|
| 304 |
+
conversation += f"{speaker}{emo_tag}: {content}\n"
|
| 305 |
+
|
| 306 |
+
try:
|
| 307 |
+
from groq import Groq
|
| 308 |
+
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
| 309 |
+
|
| 310 |
+
prompt = f"""Analyze this conversation and create a 2-3 sentence summary about THIS SPECIFIC USER.
|
| 311 |
+
|
| 312 |
+
DO NOT include information about other users or other conversations.
|
| 313 |
+
ONLY summarize what THIS user said and their patterns.
|
| 314 |
+
|
| 315 |
+
Conversation ({len(messages)} messages):
|
| 316 |
+
{conversation}
|
| 317 |
+
|
| 318 |
+
Create a concise summary including: topics this user discussed, their emotional patterns, personal details THEY mentioned, and their preferences."""
|
| 319 |
+
|
| 320 |
+
response = groq_client.chat.completions.create(
|
| 321 |
+
model="llama-3.1-8b-instant",
|
| 322 |
+
messages=[{"role": "user", "content": prompt}],
|
| 323 |
+
max_tokens=150,
|
| 324 |
+
temperature=0.7
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
summary = response.choices[0].message.content.strip()
|
| 328 |
+
|
| 329 |
+
# Save summary FOR THIS USER ONLY
|
| 330 |
+
conn = sqlite3.connect(DB_PATH)
|
| 331 |
+
cursor = conn.cursor()
|
| 332 |
+
|
| 333 |
+
cursor.execute(
|
| 334 |
+
"INSERT OR REPLACE INTO user_summaries (user_id, summary_text, updated_at) VALUES (?, ?, ?)",
|
| 335 |
+
(user_id, summary, datetime.now())
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
conn.commit()
|
| 339 |
+
conn.close()
|
| 340 |
+
|
| 341 |
+
print(f"[Summary] β
Generated for {username} (user_id: {user_id})")
|
| 342 |
+
print(f"[Summary] π Content: {summary}")
|
| 343 |
+
return summary
|
| 344 |
+
|
| 345 |
+
except Exception as e:
|
| 346 |
+
print(f"[Summary] β Error for {username}: {e}")
|
| 347 |
+
import traceback
|
| 348 |
+
traceback.print_exc()
|
| 349 |
+
return None
|
| 350 |
+
|
| 351 |
+
@app.on_event("startup")
|
| 352 |
+
async def startup_event():
|
| 353 |
+
"""Start loading models in background after server is ready"""
|
| 354 |
+
print("[Backend] π Starting up...")
|
| 355 |
+
|
| 356 |
+
# Check if avatar service is running
|
| 357 |
+
try:
|
| 358 |
+
response = requests.get(f"{AVATAR_API}/", timeout=2)
|
| 359 |
+
if response.status_code == 200:
|
| 360 |
+
print(f"[Backend] β
Avatar TTS service available at {AVATAR_API}")
|
| 361 |
+
else:
|
| 362 |
+
print(f"[Backend] β οΈ Avatar TTS service responded with {response.status_code}")
|
| 363 |
+
except requests.exceptions.ConnectionError:
|
| 364 |
+
print(f"[Backend] β οΈ Avatar TTS service NOT available at {AVATAR_API}")
|
| 365 |
+
print(f"[Backend] π‘ Text-only mode will be used (no avatar speech)")
|
| 366 |
+
print(f"[Backend] π To enable avatar:")
|
| 367 |
+
print(f"[Backend] cd avatar && python speak_server.py")
|
| 368 |
+
except Exception as e:
|
| 369 |
+
print(f"[Backend] β οΈ Error checking avatar service: {e}")
|
| 370 |
+
|
| 371 |
+
asyncio.create_task(load_models())
|
| 372 |
+
|
| 373 |
+
async def load_models():
|
| 374 |
+
"""Load all AI models asynchronously"""
|
| 375 |
+
global face_processor, text_analyzer, whisper_worker, voice_worker
|
| 376 |
+
global llm_generator, fusion_engine, models_ready
|
| 377 |
+
|
| 378 |
+
print("[Backend] π Initializing MrrrMe AI models in background...")
|
| 379 |
+
|
| 380 |
+
try:
|
| 381 |
+
# Import modules
|
| 382 |
+
from mrrrme.vision.face_processor import FaceProcessor
|
| 383 |
+
from mrrrme.audio.voice_emotion import VoiceEmotionWorker
|
| 384 |
+
from mrrrme.audio.whisper_transcription import WhisperTranscriptionWorker
|
| 385 |
+
from mrrrme.nlp.text_sentiment import TextSentimentAnalyzer
|
| 386 |
+
from mrrrme.nlp.llm_generator_groq import LLMResponseGenerator
|
| 387 |
+
from mrrrme.config import FUSE4
|
| 388 |
+
|
| 389 |
+
# Load models
|
| 390 |
+
print("[Backend] Loading FaceProcessor...")
|
| 391 |
+
face_processor = FaceProcessor()
|
| 392 |
+
|
| 393 |
+
print("[Backend] Loading TextSentiment...")
|
| 394 |
+
text_analyzer = TextSentimentAnalyzer()
|
| 395 |
+
|
| 396 |
+
print("[Backend] Loading Whisper...")
|
| 397 |
+
whisper_worker = WhisperTranscriptionWorker(text_analyzer)
|
| 398 |
+
|
| 399 |
+
print("[Backend] Loading VoiceEmotion...")
|
| 400 |
+
voice_worker = VoiceEmotionWorker(whisper_worker=whisper_worker)
|
| 401 |
+
|
| 402 |
+
print("[Backend] Initializing LLM...")
|
| 403 |
+
groq_api_key = os.getenv("GROQ_API_KEY", "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")
|
| 404 |
+
llm_generator = LLMResponseGenerator(api_key=groq_api_key)
|
| 405 |
+
|
| 406 |
+
# Initialize fusion engine
|
| 407 |
+
class FusionEngine:
|
| 408 |
+
def __init__(self):
|
| 409 |
+
self.alpha_face = 0.4
|
| 410 |
+
self.alpha_voice = 0.3
|
| 411 |
+
self.alpha_text = 0.3
|
| 412 |
+
|
| 413 |
+
def fuse(self, face_probs, voice_probs, text_probs):
|
| 414 |
+
fused = (
|
| 415 |
+
self.alpha_face * face_probs +
|
| 416 |
+
self.alpha_voice * voice_probs +
|
| 417 |
+
self.alpha_text * text_probs
|
| 418 |
+
)
|
| 419 |
+
fused = fused / (np.sum(fused) + 1e-8)
|
| 420 |
+
fused_idx = int(np.argmax(fused))
|
| 421 |
+
fused_emotion = FUSE4[fused_idx]
|
| 422 |
+
intensity = float(np.max(fused))
|
| 423 |
+
return fused_emotion, intensity
|
| 424 |
+
|
| 425 |
+
fusion_engine = FusionEngine()
|
| 426 |
+
models_ready = True
|
| 427 |
+
|
| 428 |
+
print("[Backend] β
All models loaded!")
|
| 429 |
+
|
| 430 |
+
except Exception as e:
|
| 431 |
+
print(f"[Backend] β Error loading models: {e}")
|
| 432 |
+
import traceback
|
| 433 |
+
traceback.print_exc()
|
| 434 |
+
|
| 435 |
+
@app.get("/")
|
| 436 |
+
async def root():
|
| 437 |
+
"""Root endpoint"""
|
| 438 |
+
return {
|
| 439 |
+
"status": "running",
|
| 440 |
+
"models_ready": models_ready,
|
| 441 |
+
"message": "MrrrMe AI Backend"
|
| 442 |
+
}
|
| 443 |
+
|
| 444 |
+
@app.get("/health")
|
| 445 |
+
async def health():
|
| 446 |
+
"""Health check - responds immediately"""
|
| 447 |
+
return {
|
| 448 |
+
"status": "healthy",
|
| 449 |
+
"models_ready": models_ready
|
| 450 |
+
}
|
| 451 |
+
|
| 452 |
+
@app.get("/api/debug/users")
|
| 453 |
+
async def debug_users():
|
| 454 |
+
"""Debug endpoint - view all users and their summaries"""
|
| 455 |
+
conn = sqlite3.connect(DB_PATH)
|
| 456 |
+
cursor = conn.cursor()
|
| 457 |
+
|
| 458 |
+
cursor.execute("""
|
| 459 |
+
SELECT u.username, u.user_id, s.summary_text, s.updated_at
|
| 460 |
+
FROM users u
|
| 461 |
+
LEFT JOIN user_summaries s ON u.user_id = s.user_id
|
| 462 |
+
ORDER BY u.created_at DESC
|
| 463 |
+
""")
|
| 464 |
+
|
| 465 |
+
users = []
|
| 466 |
+
for username, user_id, summary, updated in cursor.fetchall():
|
| 467 |
+
users.append({
|
| 468 |
+
"username": username,
|
| 469 |
+
"user_id": user_id,
|
| 470 |
+
"summary": summary,
|
| 471 |
+
"summary_updated": updated
|
| 472 |
+
})
|
| 473 |
+
|
| 474 |
+
conn.close()
|
| 475 |
+
|
| 476 |
+
return {"users": users, "database": DB_PATH}
|
| 477 |
+
|
| 478 |
+
@app.get("/api/debug/sessions")
|
| 479 |
+
async def debug_sessions():
|
| 480 |
+
"""Debug endpoint - view all active sessions"""
|
| 481 |
+
conn = sqlite3.connect(DB_PATH)
|
| 482 |
+
cursor = conn.cursor()
|
| 483 |
+
|
| 484 |
+
cursor.execute("""
|
| 485 |
+
SELECT s.session_id, s.token, u.username, s.is_active, s.created_at
|
| 486 |
+
FROM sessions s
|
| 487 |
+
JOIN users u ON s.user_id = u.user_id
|
| 488 |
+
ORDER BY s.created_at DESC
|
| 489 |
+
LIMIT 20
|
| 490 |
+
""")
|
| 491 |
+
|
| 492 |
+
sessions = []
|
| 493 |
+
for session_id, token, username, is_active, created_at in cursor.fetchall():
|
| 494 |
+
sessions.append({
|
| 495 |
+
"session_id": session_id,
|
| 496 |
+
"token_preview": token[:10] + "..." if token else None,
|
| 497 |
+
"username": username,
|
| 498 |
+
"is_active": bool(is_active),
|
| 499 |
+
"created_at": created_at
|
| 500 |
+
})
|
| 501 |
+
|
| 502 |
+
conn.close()
|
| 503 |
+
|
| 504 |
+
return {"sessions": sessions, "database": DB_PATH}
|
| 505 |
+
|
| 506 |
+
@app.websocket("/ws")
|
| 507 |
+
async def websocket_endpoint(websocket: WebSocket):
|
| 508 |
+
await websocket.accept()
|
| 509 |
+
print("[WebSocket] β
Client connected!")
|
| 510 |
+
|
| 511 |
+
# ===== AUTHENTICATION =====
|
| 512 |
+
session_data = None
|
| 513 |
+
user_summary = None
|
| 514 |
+
session_id = None
|
| 515 |
+
user_id = None
|
| 516 |
+
username = None
|
| 517 |
+
|
| 518 |
+
try:
|
| 519 |
+
auth_msg = await websocket.receive_json()
|
| 520 |
+
print(f"[WebSocket] π¨ Auth message received: {auth_msg.get('type')}")
|
| 521 |
+
|
| 522 |
+
if auth_msg.get("type") != "auth":
|
| 523 |
+
print(f"[WebSocket] β Wrong message type: {auth_msg.get('type')}")
|
| 524 |
+
await websocket.send_json({"type": "error", "message": "Authentication required"})
|
| 525 |
+
return
|
| 526 |
+
|
| 527 |
+
token = auth_msg.get("token")
|
| 528 |
+
print(f"[WebSocket] π Validating token: {token[:10] if token else 'None'}...")
|
| 529 |
+
|
| 530 |
+
if not token:
|
| 531 |
+
print(f"[WebSocket] β No token provided!")
|
| 532 |
+
await websocket.send_json({"type": "error", "message": "No token provided"})
|
| 533 |
+
return
|
| 534 |
+
|
| 535 |
+
# Validate token
|
| 536 |
+
conn = sqlite3.connect(DB_PATH)
|
| 537 |
+
cursor = conn.cursor()
|
| 538 |
+
|
| 539 |
+
cursor.execute(
|
| 540 |
+
"SELECT s.session_id, s.user_id, u.username FROM sessions s JOIN users u ON s.user_id = u.user_id WHERE s.token = ? AND s.is_active = 1",
|
| 541 |
+
(token,)
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
result = cursor.fetchone()
|
| 545 |
+
|
| 546 |
+
if not result:
|
| 547 |
+
# Debug: Check if token exists at all
|
| 548 |
+
cursor.execute("SELECT session_id, user_id, is_active FROM sessions WHERE token = ?", (token,))
|
| 549 |
+
debug_result = cursor.fetchone()
|
| 550 |
+
|
| 551 |
+
if debug_result:
|
| 552 |
+
print(f"[WebSocket] β οΈ Token found but session inactive or invalid: {debug_result}")
|
| 553 |
+
else:
|
| 554 |
+
print(f"[WebSocket] β Token not found in database!")
|
| 555 |
+
|
| 556 |
+
await websocket.send_json({"type": "error", "message": "Invalid session - please login again"})
|
| 557 |
+
conn.close()
|
| 558 |
+
return
|
| 559 |
+
|
| 560 |
+
session_id, user_id, username = result
|
| 561 |
+
print(f"[WebSocket] β
Token validated for user: {username} (session: {session_id})")
|
| 562 |
+
|
| 563 |
+
# Get user-specific summary
|
| 564 |
+
cursor.execute(
|
| 565 |
+
"SELECT summary_text FROM user_summaries WHERE user_id = ?",
|
| 566 |
+
(user_id,)
|
| 567 |
+
)
|
| 568 |
+
summary_row = cursor.fetchone()
|
| 569 |
+
user_summary = summary_row[0] if summary_row else None
|
| 570 |
+
|
| 571 |
+
conn.close()
|
| 572 |
+
|
| 573 |
+
session_data = {
|
| 574 |
+
'session_id': session_id,
|
| 575 |
+
'user_id': user_id,
|
| 576 |
+
'username': username
|
| 577 |
+
}
|
| 578 |
+
|
| 579 |
+
# Send authenticated confirmation
|
| 580 |
+
await websocket.send_json({
|
| 581 |
+
"type": "authenticated",
|
| 582 |
+
"username": username,
|
| 583 |
+
"summary": user_summary
|
| 584 |
+
})
|
| 585 |
+
|
| 586 |
+
print(f"[WebSocket] β
Authenticated: {username} (user_id: {user_id})")
|
| 587 |
+
if user_summary:
|
| 588 |
+
print(f"[WebSocket] π Loaded summary: {user_summary[:60]}...")
|
| 589 |
+
|
| 590 |
+
# Clear LLM's conversation history
|
| 591 |
+
if llm_generator:
|
| 592 |
+
llm_generator.clear_history()
|
| 593 |
+
print(f"[LLM] ποΈ Conversation history cleared")
|
| 594 |
+
|
| 595 |
+
# Load user's recent conversation history
|
| 596 |
+
conn = sqlite3.connect(DB_PATH)
|
| 597 |
+
cursor = conn.cursor()
|
| 598 |
+
cursor.execute(
|
| 599 |
+
"""SELECT role, content FROM messages
|
| 600 |
+
WHERE session_id IN (
|
| 601 |
+
SELECT session_id FROM sessions WHERE user_id = ?
|
| 602 |
+
)
|
| 603 |
+
ORDER BY timestamp DESC
|
| 604 |
+
LIMIT 10""",
|
| 605 |
+
(user_id,)
|
| 606 |
+
)
|
| 607 |
+
user_history = cursor.fetchall()
|
| 608 |
+
conn.close()
|
| 609 |
+
|
| 610 |
+
# Load user-specific history into LLM
|
| 611 |
+
for role, content in reversed(user_history):
|
| 612 |
+
llm_generator.conversation_history.append({
|
| 613 |
+
"role": role,
|
| 614 |
+
"content": content
|
| 615 |
+
})
|
| 616 |
+
|
| 617 |
+
if user_history:
|
| 618 |
+
print(f"[WebSocket] π Loaded {len(user_history)} messages from {username}'s history")
|
| 619 |
+
|
| 620 |
+
except Exception as auth_err:
|
| 621 |
+
print(f"[WebSocket] β Auth error: {auth_err}")
|
| 622 |
+
return
|
| 623 |
+
|
| 624 |
+
# Wait for models to load if needed
|
| 625 |
+
if not models_ready:
|
| 626 |
+
await websocket.send_json({
|
| 627 |
+
"type": "status",
|
| 628 |
+
"message": "AI models are loading, please wait..."
|
| 629 |
+
})
|
| 630 |
+
|
| 631 |
+
# Wait up to 15 minutes for models
|
| 632 |
+
for _ in range(900):
|
| 633 |
+
if models_ready:
|
| 634 |
+
await websocket.send_json({
|
| 635 |
+
"type": "status",
|
| 636 |
+
"message": "Models loaded! Ready to chat."
|
| 637 |
+
})
|
| 638 |
+
break
|
| 639 |
+
await asyncio.sleep(1)
|
| 640 |
+
|
| 641 |
+
if not models_ready:
|
| 642 |
+
await websocket.send_json({
|
| 643 |
+
"type": "error",
|
| 644 |
+
"message": "Models failed to load. Please refresh."
|
| 645 |
+
})
|
| 646 |
+
return
|
| 647 |
+
|
| 648 |
+
# Session state
|
| 649 |
+
audio_buffer = []
|
| 650 |
+
user_preferences = {"voice": "female", "language": "en"}
|
| 651 |
+
|
| 652 |
+
try:
|
| 653 |
+
while True:
|
| 654 |
+
data = await websocket.receive_json()
|
| 655 |
+
msg_type = data.get("type")
|
| 656 |
+
|
| 657 |
+
# ============ PREFERENCES UPDATE ============
|
| 658 |
+
if msg_type == "preferences":
|
| 659 |
+
if "voice" in data:
|
| 660 |
+
user_preferences["voice"] = data.get("voice", "female")
|
| 661 |
+
if "language" in data:
|
| 662 |
+
user_preferences["language"] = data.get("language", "en")
|
| 663 |
+
print(f"[Preferences] {username}: voice={user_preferences.get('voice')}, language={user_preferences.get('language')}")
|
| 664 |
+
continue
|
| 665 |
+
|
| 666 |
+
# ============ AUTO-GREETING REQUEST ============
|
| 667 |
+
elif msg_type == "request_greeting":
|
| 668 |
+
try:
|
| 669 |
+
print(f"[WebSocket] π€ Generating initial greeting for {username}...")
|
| 670 |
+
|
| 671 |
+
# Determine greeting based on user context
|
| 672 |
+
greeting_prompts = {
|
| 673 |
+
"new": f"Hey {username}! I'm MrrrMe, your emotion AI companion. How are you feeling today?",
|
| 674 |
+
"returning": f"Welcome back, {username}! It's great to see you again. How have you been?"
|
| 675 |
+
}
|
| 676 |
+
|
| 677 |
+
# Check if user has summary (returning user)
|
| 678 |
+
greeting_text = greeting_prompts["returning"] if user_summary else greeting_prompts["new"]
|
| 679 |
+
|
| 680 |
+
# Add language context
|
| 681 |
+
if user_preferences.get("language") == "nl":
|
| 682 |
+
if user_summary:
|
| 683 |
+
greeting_text = f"Welkom terug, {username}! Fijn je weer te zien. Hoe gaat het met je?"
|
| 684 |
+
else:
|
| 685 |
+
greeting_text = f"Hoi {username}! Ik ben MrrrMe, jouw emotie AI-metgezel. Hoe voel je je vandaag?"
|
| 686 |
+
|
| 687 |
+
print(f"[Greeting] π Sending: '{greeting_text}'")
|
| 688 |
+
|
| 689 |
+
# Try to send to avatar for TTS
|
| 690 |
+
audio_url = None
|
| 691 |
+
visemes = None
|
| 692 |
+
|
| 693 |
+
try:
|
| 694 |
+
voice_preference = user_preferences.get("voice", "female")
|
| 695 |
+
language_preference = user_preferences.get("language", "en")
|
| 696 |
+
|
| 697 |
+
print(f"[Greeting] π Requesting TTS from avatar service...")
|
| 698 |
+
avatar_response = requests.post(
|
| 699 |
+
f"{AVATAR_API}/speak",
|
| 700 |
+
data={
|
| 701 |
+
"text": greeting_text,
|
| 702 |
+
"voice": voice_preference,
|
| 703 |
+
"language": language_preference
|
| 704 |
+
},
|
| 705 |
+
timeout=10
|
| 706 |
+
)
|
| 707 |
+
|
| 708 |
+
if avatar_response.status_code == 200:
|
| 709 |
+
avatar_data = avatar_response.json()
|
| 710 |
+
audio_url = avatar_data.get("audio_url")
|
| 711 |
+
visemes = avatar_data.get("visemes")
|
| 712 |
+
print(f"[Greeting] β
TTS generated successfully")
|
| 713 |
+
else:
|
| 714 |
+
print(f"[Greeting] β οΈ TTS failed: {avatar_response.status_code}")
|
| 715 |
+
|
| 716 |
+
except requests.exceptions.ConnectionError as conn_err:
|
| 717 |
+
print(f"[Greeting] β οΈ Avatar service not available (port 8765 not responding)")
|
| 718 |
+
print(f"[Greeting] π Sending text-only greeting (TTS will be skipped)")
|
| 719 |
+
|
| 720 |
+
except Exception as tts_err:
|
| 721 |
+
print(f"[Greeting] β οΈ TTS error: {tts_err}")
|
| 722 |
+
print(f"[Greeting] π Sending text-only greeting")
|
| 723 |
+
|
| 724 |
+
# Send greeting to client
|
| 725 |
+
response_data = {
|
| 726 |
+
"type": "llm_response",
|
| 727 |
+
"text": greeting_text,
|
| 728 |
+
"emotion": "Neutral",
|
| 729 |
+
"intensity": 0.5,
|
| 730 |
+
"is_greeting": True
|
| 731 |
+
}
|
| 732 |
+
|
| 733 |
+
# Add audio/visemes only if TTS succeeded
|
| 734 |
+
if audio_url and visemes:
|
| 735 |
+
response_data["audio_url"] = audio_url
|
| 736 |
+
response_data["visemes"] = visemes
|
| 737 |
+
else:
|
| 738 |
+
response_data["text_only"] = True
|
| 739 |
+
print(f"[Greeting] π Sending text-only (no TTS)")
|
| 740 |
+
|
| 741 |
+
await websocket.send_json(response_data)
|
| 742 |
+
|
| 743 |
+
# Save greeting to history
|
| 744 |
+
conn = sqlite3.connect(DB_PATH)
|
| 745 |
+
cursor = conn.cursor()
|
| 746 |
+
cursor.execute(
|
| 747 |
+
"INSERT INTO messages (session_id, role, content, emotion) VALUES (?, ?, ?, ?)",
|
| 748 |
+
(session_id, "assistant", greeting_text, "Neutral")
|
| 749 |
+
)
|
| 750 |
+
conn.commit()
|
| 751 |
+
conn.close()
|
| 752 |
+
|
| 753 |
+
print(f"[Greeting] β
Sent to {username}")
|
| 754 |
+
|
| 755 |
+
except Exception as greeting_err:
|
| 756 |
+
print(f"[Greeting] β Error: {greeting_err}")
|
| 757 |
+
import traceback
|
| 758 |
+
traceback.print_exc()
|
| 759 |
+
|
| 760 |
+
try:
|
| 761 |
+
await websocket.send_json({
|
| 762 |
+
"type": "error",
|
| 763 |
+
"message": "Greeting failed - avatar service unavailable"
|
| 764 |
+
})
|
| 765 |
+
except:
|
| 766 |
+
pass
|
| 767 |
+
|
| 768 |
+
# ============ VIDEO FRAME - UPDATED WITH PROBABILITIES ============
|
| 769 |
+
elif msg_type == "video_frame":
|
| 770 |
+
try:
|
| 771 |
+
# Decode base64 image
|
| 772 |
+
img_data = base64.b64decode(data["frame"].split(",")[1])
|
| 773 |
+
img = Image.open(io.BytesIO(img_data))
|
| 774 |
+
frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
| 775 |
+
|
| 776 |
+
# Process face emotion
|
| 777 |
+
try:
|
| 778 |
+
processed_frame, result = face_processor.process_frame(frame)
|
| 779 |
+
face_emotion = face_processor.get_last_emotion() or "Neutral"
|
| 780 |
+
face_confidence = face_processor.get_last_confidence() or 0.0
|
| 781 |
+
face_probs = face_processor.get_last_probs()
|
| 782 |
+
face_quality = face_processor.get_last_quality() if hasattr(face_processor, 'get_last_quality') else 0.5
|
| 783 |
+
except Exception as proc_err:
|
| 784 |
+
print(f"[FaceProcessor] Error: {proc_err}")
|
| 785 |
+
face_emotion = "Neutral"
|
| 786 |
+
face_confidence = 0.0
|
| 787 |
+
face_probs = np.array([0.25, 0.25, 0.25, 0.25])
|
| 788 |
+
face_quality = 0.0
|
| 789 |
+
|
| 790 |
+
# Send face emotion to frontend with probabilities
|
| 791 |
+
await websocket.send_json({
|
| 792 |
+
"type": "face_emotion",
|
| 793 |
+
"emotion": face_emotion,
|
| 794 |
+
"confidence": face_confidence,
|
| 795 |
+
"probabilities": face_probs.tolist(),
|
| 796 |
+
"quality": face_quality
|
| 797 |
+
})
|
| 798 |
+
|
| 799 |
+
except Exception as e:
|
| 800 |
+
print(f"[Video] Error: {e}")
|
| 801 |
+
|
| 802 |
+
# ============ AUDIO CHUNK ============
|
| 803 |
+
elif msg_type == "audio_chunk":
|
| 804 |
+
try:
|
| 805 |
+
audio_data = base64.b64decode(data["audio"])
|
| 806 |
+
audio_buffer.append(audio_data)
|
| 807 |
+
|
| 808 |
+
if len(audio_buffer) >= 5:
|
| 809 |
+
voice_probs, voice_emotion = voice_worker.get_probs()
|
| 810 |
+
await websocket.send_json({
|
| 811 |
+
"type": "voice_emotion",
|
| 812 |
+
"emotion": voice_emotion
|
| 813 |
+
})
|
| 814 |
+
audio_buffer = audio_buffer[-3:]
|
| 815 |
+
|
| 816 |
+
except Exception as e:
|
| 817 |
+
print(f"[Audio] Error: {e}")
|
| 818 |
+
|
| 819 |
+
# ============ USER FINISHED SPEAKING (ENHANCED LOGGING) ============
|
| 820 |
+
elif msg_type == "speech_end":
|
| 821 |
+
transcription = data.get("text", "").strip()
|
| 822 |
+
|
| 823 |
+
print(f"\n{'='*80}")
|
| 824 |
+
print(f"[Speech End] π€ USER FINISHED SPEAKING: {username}")
|
| 825 |
+
print(f"{'='*80}")
|
| 826 |
+
print(f"[Transcription] '{transcription}'")
|
| 827 |
+
|
| 828 |
+
# Filter short/meaningless
|
| 829 |
+
if len(transcription) < 2:
|
| 830 |
+
print(f"[Filter] βοΈ Skipped: Too short ({len(transcription)} chars)")
|
| 831 |
+
continue
|
| 832 |
+
|
| 833 |
+
hallucinations = {"thank you", "thanks", "okay", "ok", "you", "yeah", "yep"}
|
| 834 |
+
if transcription.lower().strip('.,!?') in hallucinations:
|
| 835 |
+
print(f"[Filter] βοΈ Skipped: Hallucination detected ('{transcription}')")
|
| 836 |
+
continue
|
| 837 |
+
|
| 838 |
+
# Save user message
|
| 839 |
+
conn = sqlite3.connect(DB_PATH)
|
| 840 |
+
cursor = conn.cursor()
|
| 841 |
+
cursor.execute(
|
| 842 |
+
"INSERT INTO messages (session_id, role, content) VALUES (?, ?, ?)",
|
| 843 |
+
(session_id, "user", transcription)
|
| 844 |
+
)
|
| 845 |
+
conn.commit()
|
| 846 |
+
conn.close()
|
| 847 |
+
|
| 848 |
+
try:
|
| 849 |
+
# ========== EMOTION DETECTION PIPELINE (ENHANCED LOGGING) ==========
|
| 850 |
+
print(f"\n[Pipeline] π Starting emotion analysis pipeline...")
|
| 851 |
+
print(f"{'β'*80}")
|
| 852 |
+
|
| 853 |
+
# Step 1: Get face emotion
|
| 854 |
+
print(f"[Step 1/4] πΈ FACIAL EXPRESSION ANALYSIS")
|
| 855 |
+
face_emotion = face_processor.get_last_emotion()
|
| 856 |
+
face_confidence = face_processor.get_last_confidence()
|
| 857 |
+
face_quality = face_processor.get_last_quality() if hasattr(face_processor, 'get_last_quality') else 0.5
|
| 858 |
+
|
| 859 |
+
# Create emotion probabilities
|
| 860 |
+
emotion_map = {'Neutral': 0, 'Happy': 1, 'Sad': 2, 'Angry': 3}
|
| 861 |
+
face_probs = np.array([0.25, 0.25, 0.25, 0.25], dtype=np.float32)
|
| 862 |
+
if face_emotion in emotion_map:
|
| 863 |
+
face_idx = emotion_map[face_emotion]
|
| 864 |
+
face_probs[face_idx] = face_confidence
|
| 865 |
+
face_probs = face_probs / face_probs.sum()
|
| 866 |
+
|
| 867 |
+
print(f" Result: {face_emotion}")
|
| 868 |
+
print(f" Confidence: {face_confidence:.3f}")
|
| 869 |
+
print(f" Quality Score: {face_quality:.3f}")
|
| 870 |
+
print(f" Distribution: Neutral={face_probs[0]:.3f} | Happy={face_probs[1]:.3f} | Sad={face_probs[2]:.3f} | Angry={face_probs[3]:.3f}")
|
| 871 |
+
|
| 872 |
+
# Step 2: Get voice emotion
|
| 873 |
+
print(f"\n[Step 2/4] π€ VOICE TONE ANALYSIS")
|
| 874 |
+
voice_probs, voice_emotion = voice_worker.get_probs()
|
| 875 |
+
voice_state = voice_worker.get_state()
|
| 876 |
+
voice_active = voice_state.get('speech_active', False)
|
| 877 |
+
voice_inferences = voice_state.get('inference_count', 0)
|
| 878 |
+
voice_skipped = voice_state.get('skipped_inferences', 0)
|
| 879 |
+
|
| 880 |
+
print(f" {'β
ACTIVELY PROCESSING' if voice_active else 'β οΈ IDLE (no recent speech)'}")
|
| 881 |
+
print(f" Result: {voice_emotion}")
|
| 882 |
+
print(f" Distribution: Neutral={voice_probs[0]:.3f} | Happy={voice_probs[1]:.3f} | Sad={voice_probs[2]:.3f} | Angry={voice_probs[3]:.3f}")
|
| 883 |
+
print(f" Inferences completed: {voice_inferences}")
|
| 884 |
+
print(f" Skipped (silence optimization): {voice_skipped}")
|
| 885 |
+
efficiency = (voice_inferences / (voice_inferences + voice_skipped) * 100) if (voice_inferences + voice_skipped) > 0 else 0
|
| 886 |
+
print(f" Processing efficiency: {efficiency:.1f}%")
|
| 887 |
+
|
| 888 |
+
# Step 3: Analyze text sentiment
|
| 889 |
+
print(f"\n[Step 3/4] π¬ TEXT SENTIMENT ANALYSIS")
|
| 890 |
+
print(f" β
Using Whisper transcription")
|
| 891 |
+
text_analyzer.analyze(transcription)
|
| 892 |
+
text_probs, _ = text_analyzer.get_probs()
|
| 893 |
+
text_emotion = ['Neutral', 'Happy', 'Sad', 'Angry'][int(np.argmax(text_probs))]
|
| 894 |
+
|
| 895 |
+
print(f" Result: {text_emotion}")
|
| 896 |
+
print(f" Distribution: Neutral={text_probs[0]:.3f} | Happy={text_probs[1]:.3f} | Sad={text_probs[2]:.3f} | Angry={text_probs[3]:.3f}")
|
| 897 |
+
print(f" Text length: {len(transcription)} characters")
|
| 898 |
+
|
| 899 |
+
# Step 4: Calculate fusion weights
|
| 900 |
+
print(f"\n[Step 4/4] βοΈ MULTI-MODAL FUSION")
|
| 901 |
+
base_weights = {
|
| 902 |
+
'face': fusion_engine.alpha_face,
|
| 903 |
+
'voice': fusion_engine.alpha_voice,
|
| 904 |
+
'text': fusion_engine.alpha_text
|
| 905 |
+
}
|
| 906 |
+
|
| 907 |
+
# Adjust weights based on quality/confidence
|
| 908 |
+
adjusted_weights = base_weights.copy()
|
| 909 |
+
adjustments_made = []
|
| 910 |
+
|
| 911 |
+
# Reduce face weight if quality is poor
|
| 912 |
+
if face_quality < 0.5:
|
| 913 |
+
adjusted_weights['face'] *= 0.7
|
| 914 |
+
adjustments_made.append(f"Face weight reduced (low quality: {face_quality:.3f})")
|
| 915 |
+
|
| 916 |
+
# Reduce voice weight if not active
|
| 917 |
+
if not voice_active:
|
| 918 |
+
adjusted_weights['voice'] *= 0.5
|
| 919 |
+
adjustments_made.append(f"Voice weight reduced (no recent speech)")
|
| 920 |
+
|
| 921 |
+
# Reduce text weight if very short
|
| 922 |
+
if len(transcription) < 10:
|
| 923 |
+
adjusted_weights['text'] *= 0.7
|
| 924 |
+
adjustments_made.append(f"Text weight reduced (short input: {len(transcription)} chars)")
|
| 925 |
+
|
| 926 |
+
# Normalize weights to sum to 1.0
|
| 927 |
+
total_weight = sum(adjusted_weights.values())
|
| 928 |
+
final_weights = {k: v/total_weight for k, v in adjusted_weights.items()}
|
| 929 |
+
|
| 930 |
+
print(f" Base weights: Face={base_weights['face']:.3f} | Voice={base_weights['voice']:.3f} | Text={base_weights['text']:.3f}")
|
| 931 |
+
if adjustments_made:
|
| 932 |
+
print(f" Adjustments:")
|
| 933 |
+
for adj in adjustments_made:
|
| 934 |
+
print(f" - {adj}")
|
| 935 |
+
print(f" Final weights: Face={final_weights['face']:.3f} | Voice={final_weights['voice']:.3f} | Text={final_weights['text']:.3f}")
|
| 936 |
+
|
| 937 |
+
# Calculate weighted fusion
|
| 938 |
+
fused_probs = (
|
| 939 |
+
final_weights['face'] * face_probs +
|
| 940 |
+
final_weights['voice'] * voice_probs +
|
| 941 |
+
final_weights['text'] * text_probs
|
| 942 |
+
)
|
| 943 |
+
fused_probs = fused_probs / (np.sum(fused_probs) + 1e-8)
|
| 944 |
+
|
| 945 |
+
fused_emotion, intensity = fusion_engine.fuse(face_probs, voice_probs, text_probs)
|
| 946 |
+
|
| 947 |
+
# Calculate fusion accuracy metrics
|
| 948 |
+
agreement_count = sum([
|
| 949 |
+
face_emotion == fused_emotion,
|
| 950 |
+
voice_emotion == fused_emotion,
|
| 951 |
+
text_emotion == fused_emotion
|
| 952 |
+
])
|
| 953 |
+
agreement_score = agreement_count / 3.0
|
| 954 |
+
|
| 955 |
+
# Check for conflicts
|
| 956 |
+
all_same = (face_emotion == voice_emotion == text_emotion)
|
| 957 |
+
has_conflict = len({face_emotion, voice_emotion, text_emotion}) == 3
|
| 958 |
+
|
| 959 |
+
print(f"\n {'β'*76}")
|
| 960 |
+
print(f" FUSION RESULTS:")
|
| 961 |
+
print(f" {'β'*76}")
|
| 962 |
+
print(f" Input emotions:")
|
| 963 |
+
print(f" Face: {face_emotion:7s} (confidence={face_probs[emotion_map.get(face_emotion, 0)]:.3f}, weight={final_weights['face']:.3f})")
|
| 964 |
+
print(f" Voice: {voice_emotion:7s} (confidence={voice_probs[emotion_map.get(voice_emotion, 0)]:.3f}, weight={final_weights['voice']:.3f})")
|
| 965 |
+
print(f" Text: {text_emotion:7s} (confidence={text_probs[emotion_map.get(text_emotion, 0)]:.3f}, weight={final_weights['text']:.3f})")
|
| 966 |
+
print(f" {'β'*76}")
|
| 967 |
+
print(f" FUSED EMOTION: {fused_emotion}")
|
| 968 |
+
print(f" Intensity: {intensity:.3f}")
|
| 969 |
+
print(f" Fused distribution: Neutral={fused_probs[0]:.3f} | Happy={fused_probs[1]:.3f} | Sad={fused_probs[2]:.3f} | Angry={fused_probs[3]:.3f}")
|
| 970 |
+
print(f" {'β'*76}")
|
| 971 |
+
print(f" Agreement: {agreement_count}/3 modalities ({agreement_score*100:.1f}%)")
|
| 972 |
+
|
| 973 |
+
if all_same:
|
| 974 |
+
print(f" Status: β
Perfect agreement - all modalities aligned")
|
| 975 |
+
elif has_conflict:
|
| 976 |
+
print(f" Status: β οΈ Full conflict - weighted fusion resolved disagreement")
|
| 977 |
+
else:
|
| 978 |
+
print(f" Status: π Partial agreement - majority vote with confidence weighting")
|
| 979 |
+
|
| 980 |
+
print(f" {'β'*76}")
|
| 981 |
+
|
| 982 |
+
# ========== LLM INPUT PREPARATION ==========
|
| 983 |
+
print(f"\n[LLM Input] π§ Preparing context for language model...")
|
| 984 |
+
|
| 985 |
+
# Language instruction
|
| 986 |
+
user_language = user_preferences.get("language", "en")
|
| 987 |
+
|
| 988 |
+
context_prefix = ""
|
| 989 |
+
if user_summary:
|
| 990 |
+
context_prefix = f"[User context for {username}: {user_summary}]\n\n"
|
| 991 |
+
print(f"[LLM Input] - User context: YES ({len(user_summary)} chars)")
|
| 992 |
+
else:
|
| 993 |
+
print(f"[LLM Input] - User context: NO (new user)")
|
| 994 |
+
|
| 995 |
+
# Add language instruction
|
| 996 |
+
if user_language == "nl":
|
| 997 |
+
context_prefix += "[BELANGRIJK: Antwoord ALTIJD in het Nederlands!]\n\n"
|
| 998 |
+
print(f"[LLM Input] - Language: Dutch (Nederlands)")
|
| 999 |
+
else:
|
| 1000 |
+
context_prefix += "[IMPORTANT: ALWAYS respond in English!]\n\n"
|
| 1001 |
+
print(f"[LLM Input] - Language: English")
|
| 1002 |
+
|
| 1003 |
+
full_llm_input = context_prefix + transcription
|
| 1004 |
+
|
| 1005 |
+
print(f"[LLM Input] - Fused emotion: {fused_emotion}")
|
| 1006 |
+
print(f"[LLM Input] - Face emotion: {face_emotion}")
|
| 1007 |
+
print(f"[LLM Input] - Voice emotion: {voice_emotion}")
|
| 1008 |
+
print(f"[LLM Input] - Intensity: {intensity:.3f}")
|
| 1009 |
+
print(f"[LLM Input] - User text: '{transcription}'")
|
| 1010 |
+
print(f"[LLM Input] - Full prompt length: {len(full_llm_input)} chars")
|
| 1011 |
+
|
| 1012 |
+
if len(context_prefix) > 50:
|
| 1013 |
+
print(f"[LLM Input] - Context preview: '{context_prefix[:100]}...'")
|
| 1014 |
+
|
| 1015 |
+
# Generate LLM response
|
| 1016 |
+
print(f"\n[LLM] π€ Generating response...")
|
| 1017 |
+
response_text = llm_generator.generate_response(
|
| 1018 |
+
fused_emotion, face_emotion, voice_emotion,
|
| 1019 |
+
full_llm_input, force=True, intensity=intensity
|
| 1020 |
+
)
|
| 1021 |
+
|
| 1022 |
+
print(f"[LLM] β
Response generated: '{response_text}'")
|
| 1023 |
+
|
| 1024 |
+
# Save assistant message
|
| 1025 |
+
conn = sqlite3.connect(DB_PATH)
|
| 1026 |
+
cursor = conn.cursor()
|
| 1027 |
+
cursor.execute(
|
| 1028 |
+
"INSERT INTO messages (session_id, role, content, emotion) VALUES (?, ?, ?, ?)",
|
| 1029 |
+
(session_id, "assistant", response_text, fused_emotion)
|
| 1030 |
+
)
|
| 1031 |
+
conn.commit()
|
| 1032 |
+
conn.close()
|
| 1033 |
+
|
| 1034 |
+
# ========== SEND TO AVATAR FOR TTS ==========
|
| 1035 |
+
print(f"\n[TTS] π Sending to avatar backend...")
|
| 1036 |
+
|
| 1037 |
+
try:
|
| 1038 |
+
voice_preference = user_preferences.get("voice", "female")
|
| 1039 |
+
language_preference = user_preferences.get("language", "en")
|
| 1040 |
+
|
| 1041 |
+
print(f"[TTS] - Voice: {voice_preference}")
|
| 1042 |
+
print(f"[TTS] - Language: {language_preference}")
|
| 1043 |
+
print(f"[TTS] - Text: '{response_text}'")
|
| 1044 |
+
|
| 1045 |
+
avatar_response = requests.post(
|
| 1046 |
+
f"{AVATAR_API}/speak",
|
| 1047 |
+
data={
|
| 1048 |
+
"text": response_text,
|
| 1049 |
+
"voice": voice_preference,
|
| 1050 |
+
"language": language_preference
|
| 1051 |
+
},
|
| 1052 |
+
timeout=45
|
| 1053 |
+
)
|
| 1054 |
+
avatar_response.raise_for_status()
|
| 1055 |
+
avatar_data = avatar_response.json()
|
| 1056 |
+
|
| 1057 |
+
print(f"[TTS] β
Avatar TTS generated")
|
| 1058 |
+
print(f"[TTS] - Audio URL: {avatar_data.get('audio_url', 'N/A')}")
|
| 1059 |
+
print(f"[TTS] - Visemes: {len(avatar_data.get('visemes', []))} keyframes")
|
| 1060 |
+
|
| 1061 |
+
await websocket.send_json({
|
| 1062 |
+
"type": "llm_response",
|
| 1063 |
+
"text": response_text,
|
| 1064 |
+
"emotion": fused_emotion,
|
| 1065 |
+
"intensity": intensity,
|
| 1066 |
+
"audio_url": avatar_data.get("audio_url"),
|
| 1067 |
+
"visemes": avatar_data.get("visemes")
|
| 1068 |
+
})
|
| 1069 |
+
|
| 1070 |
+
print(f"[Pipeline] β
Complete response sent to {username}")
|
| 1071 |
+
|
| 1072 |
+
except requests.exceptions.ConnectionError:
|
| 1073 |
+
print(f"[TTS] β οΈ Avatar service not available - sending text-only")
|
| 1074 |
+
await websocket.send_json({
|
| 1075 |
+
"type": "llm_response",
|
| 1076 |
+
"text": response_text,
|
| 1077 |
+
"emotion": fused_emotion,
|
| 1078 |
+
"intensity": intensity,
|
| 1079 |
+
"text_only": True
|
| 1080 |
+
})
|
| 1081 |
+
|
| 1082 |
+
except Exception as avatar_err:
|
| 1083 |
+
print(f"[TTS] β Avatar error: {avatar_err}")
|
| 1084 |
+
await websocket.send_json({
|
| 1085 |
+
"type": "llm_response",
|
| 1086 |
+
"text": response_text,
|
| 1087 |
+
"emotion": fused_emotion,
|
| 1088 |
+
"intensity": intensity,
|
| 1089 |
+
"error": "Avatar TTS failed",
|
| 1090 |
+
"text_only": True
|
| 1091 |
+
})
|
| 1092 |
+
|
| 1093 |
+
print(f"{'='*80}\n")
|
| 1094 |
+
|
| 1095 |
+
except Exception as e:
|
| 1096 |
+
print(f"[Pipeline] β Error in emotion processing: {e}")
|
| 1097 |
+
import traceback
|
| 1098 |
+
traceback.print_exc()
|
| 1099 |
+
|
| 1100 |
+
except WebSocketDisconnect:
|
| 1101 |
+
print(f"[WebSocket] β {username} disconnected (close/refresh)")
|
| 1102 |
+
|
| 1103 |
+
except Exception as e:
|
| 1104 |
+
print(f"[WebSocket] β {username} error: {e}")
|
| 1105 |
+
import traceback
|
| 1106 |
+
traceback.print_exc()
|
| 1107 |
+
|
| 1108 |
+
finally:
|
| 1109 |
+
# Generate summary on disconnect
|
| 1110 |
+
if session_data and session_id and user_id:
|
| 1111 |
+
print(f"[WebSocket] π Generating summary for {username} (session ended)...")
|
| 1112 |
+
try:
|
| 1113 |
+
summary = await generate_session_summary(session_id, user_id)
|
| 1114 |
+
if summary:
|
| 1115 |
+
print(f"[Summary] β
Saved for {username}")
|
| 1116 |
+
else:
|
| 1117 |
+
print(f"[Summary] βοΈ Skipped (not enough messages)")
|
| 1118 |
+
except Exception as summary_err:
|
| 1119 |
+
print(f"[Summary] β Error for {username}: {summary_err}")
|
| 1120 |
+
|
| 1121 |
+
if __name__ == "__main__":
|
| 1122 |
+
import uvicorn
|
| 1123 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
mrrrme/database/db_tool.py
CHANGED
|
@@ -136,7 +136,7 @@ def reset_database():
|
|
| 136 |
conn.close()
|
| 137 |
|
| 138 |
# Recreate tables
|
| 139 |
-
from
|
| 140 |
init_db()
|
| 141 |
|
| 142 |
print("β
Database reset complete")
|
|
|
|
| 136 |
conn.close()
|
| 137 |
|
| 138 |
# Recreate tables
|
| 139 |
+
from mrrrme.backend_server_old import init_db
|
| 140 |
init_db()
|
| 141 |
|
| 142 |
print("β
Database reset complete")
|