Spaces:
Running
on
Zero
Running
on
Zero
Create demo.py
Browse files
demo.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from transformers import AutoModelForCausalLM
|
| 7 |
+
import matplotlib
|
| 8 |
+
|
| 9 |
+
matplotlib.use("Agg") # Use Agg backend for non-interactive plotting
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
os.environ["HF_TOKEN"] = os.environ.get("TOKEN_FROM_SECRET") or True
|
| 13 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 14 |
+
"vikhyatk/moondream-next",
|
| 15 |
+
trust_remote_code=True,
|
| 16 |
+
torch_dtype=torch.float16,
|
| 17 |
+
device_map={"": "cuda"},
|
| 18 |
+
revision="69420e0c6596863b4f0059e365fadc5cb388e8fd"
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def visualize_gaze_multi(face_boxes, gaze_points, image=None, show_plot=True):
|
| 23 |
+
"""Visualization function with reduced whitespace"""
|
| 24 |
+
# Calculate figure size based on image aspect ratio
|
| 25 |
+
if image is not None:
|
| 26 |
+
height, width = image.shape[:2]
|
| 27 |
+
aspect_ratio = width / height
|
| 28 |
+
fig_height = 6 # Base height
|
| 29 |
+
fig_width = fig_height * aspect_ratio
|
| 30 |
+
else:
|
| 31 |
+
width, height = 800, 600
|
| 32 |
+
fig_width, fig_height = 10, 8
|
| 33 |
+
|
| 34 |
+
# Create figure with tight layout
|
| 35 |
+
fig = plt.figure(figsize=(fig_width, fig_height))
|
| 36 |
+
ax = fig.add_subplot(111)
|
| 37 |
+
|
| 38 |
+
if image is not None:
|
| 39 |
+
ax.imshow(image)
|
| 40 |
+
else:
|
| 41 |
+
ax.set_facecolor("#1a1a1a")
|
| 42 |
+
fig.patch.set_facecolor("#1a1a1a")
|
| 43 |
+
|
| 44 |
+
colors = plt.cm.rainbow(np.linspace(0, 1, len(face_boxes)))
|
| 45 |
+
|
| 46 |
+
for face_box, gaze_point, color in zip(face_boxes, gaze_points, colors):
|
| 47 |
+
hex_color = "#{:02x}{:02x}{:02x}".format(
|
| 48 |
+
int(color[0] * 255), int(color[1] * 255), int(color[2] * 255)
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
x, y, width_box, height_box = face_box
|
| 52 |
+
gaze_x, gaze_y = gaze_point
|
| 53 |
+
|
| 54 |
+
face_center_x = x + width_box / 2
|
| 55 |
+
face_center_y = y + height_box / 2
|
| 56 |
+
|
| 57 |
+
face_rect = plt.Rectangle(
|
| 58 |
+
(x, y), width_box, height_box, fill=False, color=hex_color, linewidth=2
|
| 59 |
+
)
|
| 60 |
+
ax.add_patch(face_rect)
|
| 61 |
+
|
| 62 |
+
points = 50
|
| 63 |
+
alphas = np.linspace(0.8, 0, points)
|
| 64 |
+
|
| 65 |
+
x_points = np.linspace(face_center_x, gaze_x, points)
|
| 66 |
+
y_points = np.linspace(face_center_y, gaze_y, points)
|
| 67 |
+
|
| 68 |
+
for i in range(points - 1):
|
| 69 |
+
ax.plot(
|
| 70 |
+
[x_points[i], x_points[i + 1]],
|
| 71 |
+
[y_points[i], y_points[i + 1]],
|
| 72 |
+
color=hex_color,
|
| 73 |
+
alpha=alphas[i],
|
| 74 |
+
linewidth=4,
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
ax.scatter(gaze_x, gaze_y, color=hex_color, s=100, zorder=5)
|
| 78 |
+
ax.scatter(gaze_x, gaze_y, color="white", s=50, zorder=6)
|
| 79 |
+
|
| 80 |
+
# Set plot limits and remove axes
|
| 81 |
+
ax.set_xlim(0, width)
|
| 82 |
+
ax.set_ylim(height, 0)
|
| 83 |
+
ax.set_aspect("equal")
|
| 84 |
+
ax.set_xticks([])
|
| 85 |
+
ax.set_yticks([])
|
| 86 |
+
|
| 87 |
+
# Remove padding around the plot
|
| 88 |
+
plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
|
| 89 |
+
|
| 90 |
+
return fig
|
| 91 |
+
|
| 92 |
+
@spaces.GPU(duration=15)
|
| 93 |
+
def process_image(input_image):
|
| 94 |
+
try:
|
| 95 |
+
# Convert to PIL Image if needed
|
| 96 |
+
if isinstance(input_image, np.ndarray):
|
| 97 |
+
pil_image = Image.fromarray(input_image)
|
| 98 |
+
else:
|
| 99 |
+
pil_image = input_image
|
| 100 |
+
|
| 101 |
+
# Get image encoding
|
| 102 |
+
enc_image = model.encode_image(pil_image)
|
| 103 |
+
|
| 104 |
+
# Detect faces
|
| 105 |
+
faces = model.detect(enc_image, "face")["objects"]
|
| 106 |
+
|
| 107 |
+
if not faces:
|
| 108 |
+
return None, "No faces detected in the image."
|
| 109 |
+
|
| 110 |
+
# Process each face
|
| 111 |
+
face_boxes = []
|
| 112 |
+
gaze_points = []
|
| 113 |
+
|
| 114 |
+
for face in faces:
|
| 115 |
+
face_center = (
|
| 116 |
+
(face["x_min"] + face["x_max"]) / 2,
|
| 117 |
+
(face["y_min"] + face["y_max"]) / 2,
|
| 118 |
+
)
|
| 119 |
+
gaze = model.detect_gaze(enc_image, face_center)
|
| 120 |
+
|
| 121 |
+
if gaze is None:
|
| 122 |
+
continue
|
| 123 |
+
|
| 124 |
+
face_box = (
|
| 125 |
+
face["x_min"] * pil_image.width,
|
| 126 |
+
face["y_min"] * pil_image.height,
|
| 127 |
+
(face["x_max"] - face["x_min"]) * pil_image.width,
|
| 128 |
+
(face["y_max"] - face["y_min"]) * pil_image.height,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
gaze_point = (
|
| 132 |
+
gaze["x"] * pil_image.width,
|
| 133 |
+
gaze["y"] * pil_image.height,
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
face_boxes.append(face_box)
|
| 137 |
+
gaze_points.append(gaze_point)
|
| 138 |
+
|
| 139 |
+
# Create visualization
|
| 140 |
+
image_array = np.array(pil_image)
|
| 141 |
+
fig = visualize_gaze_multi(
|
| 142 |
+
face_boxes, gaze_points, image=image_array, show_plot=False
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
return fig, f"Detected {len(faces)} faces."
|
| 146 |
+
|
| 147 |
+
except Exception as e:
|
| 148 |
+
return None, f"Error processing image: {str(e)}"
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
with gr.Blocks(title="Moondream Gaze Detection") as app:
|
| 152 |
+
gr.Markdown("# 🌔 Moondream Gaze Detection")
|
| 153 |
+
gr.Markdown("Upload an image to detect faces and visualize their gaze directions.")
|
| 154 |
+
|
| 155 |
+
with gr.Row():
|
| 156 |
+
with gr.Column():
|
| 157 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
| 158 |
+
|
| 159 |
+
with gr.Column():
|
| 160 |
+
output_text = gr.Textbox(label="Status")
|
| 161 |
+
output_plot = gr.Plot(label="Visualization")
|
| 162 |
+
|
| 163 |
+
input_image.change(
|
| 164 |
+
fn=process_image, inputs=[input_image], outputs=[output_plot, output_text]
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
gr.Examples(
|
| 168 |
+
examples=["gaze_test.jpg", "gaze_test2.jpg", "gaze_test3.jpg"],
|
| 169 |
+
inputs=input_image,
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
if __name__ == "__main__":
|
| 173 |
+
app.launch()
|