Text / app.py
mulavamshi's picture
Update app.py
fa1621b verified
raw
history blame
4.74 kB
import os
os.environ["TRANSFORMERS_CACHE"] = "./hf_cache"
import streamlit as st
from transformers import pipeline
from streamlit_lottie import st_lottie
import requests
import datetime
def load_lottieurl(url):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
lottie_animation = load_lottieurl("https://assets2.lottiefiles.com/packages/lf20_w51pcehl.json")
st.markdown("<h1 style='text-align: center;'>πŸ“ Text Summarization App</h1>", unsafe_allow_html=True)
st_lottie(lottie_animation, height=250, key="header_anim")
@st.cache_resource(show_spinner="πŸ”„ Loading summarization model...")
def load_summarizer(model_name):
return pipeline("summarization", model=model_name)
model_map = {
"BART": "facebook/bart-large-cnn",
"T5": "t5-small",
"PEGASUS": "google/pegasus-cnn_dailymail"
}
model_choice = st.selectbox("Choose Summarization Model", list(model_map.keys()))
summarizer = load_summarizer(model_map[model_choice])
mode = st.radio("Choose Output Mode:", ["Paragraph", "Bullet Points", "Custom"], horizontal=True)
col1, col2 = st.columns(2)
with col1:
st.markdown("### ✍️ Enter Your Text")
user_input = st.text_area("", height=300, placeholder="Paste your job description, article, or any long-form text here...")
word_count = len(user_input.split())
st.markdown(f"**{word_count} words**")
if mode != "Custom":
length_label = st.radio("Summary Length", ["Short", "Medium"], horizontal=True)
min_len = 40
max_len = 150 if length_label == "Short" else 300
else:
st.markdown("### πŸ› οΈ Customize Summary Length")
min_len = st.slider("Minimum Length", 20, 200, 50)
max_len = st.slider("Maximum Length", 100, 500, 200)
if st.button("✨ Summarize", use_container_width=True):
if not user_input.strip():
st.warning("Please enter text to summarize.")
else:
with st.spinner("Generating your summary... hang tight! ⏳"):
try:
result = summarizer(user_input, max_length=max_len, min_length=min_len, do_sample=False)
summary = result[0]['summary_text']
if mode == "Bullet Points":
summary = "β€’ " + summary.replace(". ", ".\nβ€’ ")
st.session_state["summary"] = summary
except Exception as e:
st.error(f"⚠️ Error during summarization: {e}")
import datetime # βœ… Make sure this is at the top of your file
# Right Column: Output
with col2:
st.markdown("### πŸ“„ Summary Output")
if "summary" in st.session_state:
st.success(st.session_state["summary"])
summary_words = len(st.session_state["summary"].split())
st.markdown(f"πŸ“ {summary_words} words")
# βœ… Direct Download Button
st.download_button(
label="πŸ“₯ Download This Summary",
data=st.session_state["summary"],
file_name="summary.txt",
mime="text/plain"
)
# Save Options in Expander
with st.expander("πŸ’Ύ Save & View Summary History"):
# Save to history file
if st.button("βœ… Save this summary to history"):
try:
with open("summary_history.txt", "a", encoding="utf-8") as f:
f.write("\n" + "="*50 + "\n")
f.write(f"πŸ•’ Timestamp: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
f.write(f"πŸ”Ή Model Used: {model_choice}\n")
f.write(f"πŸ”Έ Mode: {mode}\n")
f.write(f"πŸ“ Original Text:\n{user_input.strip()}\n\n")
f.write(f"βœ… Summary:\n{st.session_state['summary'].strip()}\n")
f.write("="*50 + "\n\n")
st.success("πŸ“Œ Summary saved to history!")
except Exception as e:
st.error(f"❌ Failed to save summary: {e}")
# View Summary History
if st.checkbox("πŸ“š Show Summary History"):
try:
with open("summary_history.txt", "r", encoding="utf-8") as f:
history = f.read()
st.text_area("πŸ—‚οΈ Summary History", value=history, height=300)
except FileNotFoundError:
st.info("No history found yet.")
else:
st.info("Your summary will appear here once generated.")
st.markdown("<hr>", unsafe_allow_html=True)
st.markdown("<small>Built by MULA VAMSHI🀍 using Hugging Face Transformers, Streamlit & Lottie</small>", unsafe_allow_html=True)