Spaces:
Sleeping
Sleeping
| # ------------------------๐ง ENVIRONMENT SETUP ------------------------ | |
| import os | |
| os.environ["TRANSFORMERS_CACHE"] = "./hf_cache" | |
| import streamlit as st | |
| from transformers import pipeline | |
| from streamlit_lottie import st_lottie | |
| import requests | |
| import datetime | |
| import pandas as pd | |
| # ------------------------๐๏ธ LOAD LOTTIE ANIMATION ------------------------ | |
| def load_lottieurl(url): | |
| r = requests.get(url) | |
| if r.status_code != 200: | |
| return None | |
| return r.json() | |
| lottie_animation = load_lottieurl("https://assets2.lottiefiles.com/packages/lf20_w51pcehl.json") | |
| # ------------------------๐ APP TITLE & HEADER ------------------------ | |
| st.markdown("<h1 style='text-align: center;'>๐ Text Summarization App</h1>", unsafe_allow_html=True) | |
| st_lottie(lottie_animation, height=250, key="header_anim") | |
| # ------------------------๐ LOAD SUMMARIZATION MODELS ------------------------ | |
| def load_summarizer(model_name): | |
| return pipeline("summarization", model=model_name) | |
| model_map = { | |
| "BART": "facebook/bart-large-cnn", | |
| "T5": "t5-small", | |
| "PEGASUS": "google/pegasus-cnn_dailymail" | |
| } | |
| model_choice = st.selectbox("๐ Choose Summarization Model", list(model_map.keys())) | |
| summarizer = load_summarizer(model_map[model_choice]) | |
| # ------------------------๐ ๏ธ USER INPUT & CONTROLS ------------------------ | |
| mode = st.radio("๐ค Choose Output Mode:", ["Paragraph", "Bullet Points", "Custom"], horizontal=True) | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.markdown("### โ๏ธ Enter Text or Upload File") | |
| uploaded_file = st.file_uploader("๐ Upload .txt file", type=["txt"]) | |
| if uploaded_file is not None: | |
| user_input = uploaded_file.read().decode("utf-8") | |
| st.text_area("๐ Uploaded Text Preview", value=user_input, height=200) | |
| else: | |
| user_input = st.text_area("", height=300, placeholder="Paste your job description, article, or any long-form text here...") | |
| word_count = len(user_input.split()) | |
| st.markdown(f"**๐งฎ {word_count} words**") | |
| # ๐ง Summary length control | |
| if mode != "Custom": | |
| length_label = st.radio("๐ Summary Length", ["Short", "Medium"], horizontal=True) | |
| min_len = 40 | |
| max_len = 150 if length_label == "Short" else 300 | |
| else: | |
| st.markdown("### ๐๏ธ Customize Summary Length") | |
| min_len = st.slider("Minimum Length", 20, 200, 50) | |
| max_len = st.slider("Maximum Length", 100, 500, 200) | |
| # โจ Generate Summary | |
| if st.button("โจ Summarize", use_container_width=True): | |
| if not user_input.strip(): | |
| st.warning("โ ๏ธ Please enter text to summarize.") | |
| else: | |
| with st.spinner("๐ Generating your summary... hang tight! โณ"): | |
| try: | |
| result = summarizer(user_input, max_length=max_len, min_length=min_len, do_sample=False) | |
| summary = result[0]['summary_text'] | |
| if mode == "Bullet Points": | |
| summary = "โข " + summary.replace(". ", ".\nโข ") | |
| st.session_state["summary"] = summary | |
| except Exception as e: | |
| st.error(f"โ ๏ธ Error during summarization: {e}") | |
| # ------------------------๐ SUMMARY OUTPUT & HISTORY ------------------------ | |
| with col2: | |
| st.markdown("### ๐ Summary Output") | |
| if "summary" in st.session_state: | |
| st.success(st.session_state["summary"]) | |
| summary_words = len(st.session_state["summary"].split()) | |
| st.markdown(f"๐ {summary_words} words") | |
| # ๐ฅ Download Summary as TXT | |
| st.download_button( | |
| label="๐ฅ Download This Summary (TXT)", | |
| data=st.session_state["summary"], | |
| file_name="summary.txt", | |
| mime="text/plain" | |
| ) | |
| # ๐พ Save to Summary History | |
| with st.expander("๐พ Save & View Summary History"): | |
| if st.button("โ Save this summary to history"): | |
| try: | |
| with open("summary_history.txt", "a", encoding="utf-8") as f: | |
| f.write("\n" + "="*50 + "\n") | |
| f.write(f"๐ Timestamp: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n") | |
| f.write(f"๐น Model Used: {model_choice}\n") | |
| f.write(f"๐ธ Mode: {mode}\n") | |
| f.write(f"๐ Original Text:\n{user_input.strip()}\n\n") | |
| f.write(f"โ Summary:\n{st.session_state['summary'].strip()}\n") | |
| f.write("="*50 + "\n\n") | |
| st.success("๐ Summary saved to history!") | |
| except Exception as e: | |
| st.error(f"โ Failed to save summary: {e}") | |
| # ๐ View Summary History | |
| if st.checkbox("๐ Show Summary History"): | |
| try: | |
| with open("summary_history.txt", "r", encoding="utf-8") as f: | |
| history = f.read() | |
| st.text_area("๐๏ธ Summary History", value=history, height=300) | |
| except FileNotFoundError: | |
| st.info("โน๏ธ No history found yet.") | |
| # ๐ Export as CSV | |
| if st.button("โฌ๏ธ Export History as CSV"): | |
| try: | |
| summaries = [] | |
| with open("summary_history.txt", "r", encoding="utf-8") as f: | |
| lines = f.read().split("="*50) | |
| for entry in lines: | |
| if "๐ Timestamp" in entry: | |
| lines_dict = { | |
| "Timestamp": entry.split("๐ Timestamp: ")[1].split("\n")[0].strip(), | |
| "Model": entry.split("๐น Model Used: ")[1].split("\n")[0].strip(), | |
| "Mode": entry.split("๐ธ Mode: ")[1].split("\n")[0].strip(), | |
| "Original_Text": entry.split("๐ Original Text:\n")[1].split("\n\n")[0].strip(), | |
| "Summary": entry.split("โ Summary:\n")[1].strip() | |
| } | |
| summaries.append(lines_dict) | |
| df = pd.DataFrame(summaries) | |
| csv = df.to_csv(index=False).encode('utf-8') | |
| st.download_button("๐ Download CSV File", csv, "summary_history.csv", "text/csv") | |
| except Exception as e: | |
| st.error(f"โ Failed to export as CSV: {e}") | |
| else: | |
| st.info("โน๏ธ Your summary will appear here once generated.") | |
| # ------------------------๐ FOOTER ------------------------ | |
| st.markdown("<hr>", unsafe_allow_html=True) | |
| st.markdown( | |
| "<small>๐ Built by <b>MULA VAMSHI๐ค</b> using Hugging Face Transformers, Streamlit & Lottie</small>", | |
| unsafe_allow_html=True | |
| ) | |