Text / app.py
mulavamshi's picture
Update app.py
435b1b4 verified
# ------------------------๐Ÿ”ง ENVIRONMENT SETUP ------------------------
import os
os.environ["TRANSFORMERS_CACHE"] = "./hf_cache"
import streamlit as st
from transformers import pipeline
from streamlit_lottie import st_lottie
import requests
import datetime
import pandas as pd
# ------------------------๐ŸŽž๏ธ LOAD LOTTIE ANIMATION ------------------------
def load_lottieurl(url):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
lottie_animation = load_lottieurl("https://assets2.lottiefiles.com/packages/lf20_w51pcehl.json")
# ------------------------๐Ÿ“Œ APP TITLE & HEADER ------------------------
st.markdown("<h1 style='text-align: center;'>๐Ÿ“ Text Summarization App</h1>", unsafe_allow_html=True)
st_lottie(lottie_animation, height=250, key="header_anim")
# ------------------------๐Ÿš€ LOAD SUMMARIZATION MODELS ------------------------
@st.cache_resource(show_spinner="๐Ÿ”„ Loading summarization model...")
def load_summarizer(model_name):
return pipeline("summarization", model=model_name)
model_map = {
"BART": "facebook/bart-large-cnn",
"T5": "t5-small",
"PEGASUS": "google/pegasus-cnn_dailymail"
}
model_choice = st.selectbox("๐Ÿ” Choose Summarization Model", list(model_map.keys()))
summarizer = load_summarizer(model_map[model_choice])
# ------------------------๐Ÿ› ๏ธ USER INPUT & CONTROLS ------------------------
mode = st.radio("๐Ÿ“ค Choose Output Mode:", ["Paragraph", "Bullet Points", "Custom"], horizontal=True)
col1, col2 = st.columns(2)
with col1:
st.markdown("### โœ๏ธ Enter Text or Upload File")
uploaded_file = st.file_uploader("๐Ÿ“‚ Upload .txt file", type=["txt"])
if uploaded_file is not None:
user_input = uploaded_file.read().decode("utf-8")
st.text_area("๐Ÿ“ƒ Uploaded Text Preview", value=user_input, height=200)
else:
user_input = st.text_area("", height=300, placeholder="Paste your job description, article, or any long-form text here...")
word_count = len(user_input.split())
st.markdown(f"**๐Ÿงฎ {word_count} words**")
# ๐Ÿ”ง Summary length control
if mode != "Custom":
length_label = st.radio("๐Ÿ“ Summary Length", ["Short", "Medium"], horizontal=True)
min_len = 40
max_len = 150 if length_label == "Short" else 300
else:
st.markdown("### ๐ŸŽš๏ธ Customize Summary Length")
min_len = st.slider("Minimum Length", 20, 200, 50)
max_len = st.slider("Maximum Length", 100, 500, 200)
# โœจ Generate Summary
if st.button("โœจ Summarize", use_container_width=True):
if not user_input.strip():
st.warning("โš ๏ธ Please enter text to summarize.")
else:
with st.spinner("๐Ÿ”„ Generating your summary... hang tight! โณ"):
try:
result = summarizer(user_input, max_length=max_len, min_length=min_len, do_sample=False)
summary = result[0]['summary_text']
if mode == "Bullet Points":
summary = "โ€ข " + summary.replace(". ", ".\nโ€ข ")
st.session_state["summary"] = summary
except Exception as e:
st.error(f"โš ๏ธ Error during summarization: {e}")
# ------------------------๐Ÿ“„ SUMMARY OUTPUT & HISTORY ------------------------
with col2:
st.markdown("### ๐Ÿ“„ Summary Output")
if "summary" in st.session_state:
st.success(st.session_state["summary"])
summary_words = len(st.session_state["summary"].split())
st.markdown(f"๐Ÿ“ {summary_words} words")
# ๐Ÿ“ฅ Download Summary as TXT
st.download_button(
label="๐Ÿ“ฅ Download This Summary (TXT)",
data=st.session_state["summary"],
file_name="summary.txt",
mime="text/plain"
)
# ๐Ÿ’พ Save to Summary History
with st.expander("๐Ÿ’พ Save & View Summary History"):
if st.button("โœ… Save this summary to history"):
try:
with open("summary_history.txt", "a", encoding="utf-8") as f:
f.write("\n" + "="*50 + "\n")
f.write(f"๐Ÿ•’ Timestamp: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
f.write(f"๐Ÿ”น Model Used: {model_choice}\n")
f.write(f"๐Ÿ”ธ Mode: {mode}\n")
f.write(f"๐Ÿ“ Original Text:\n{user_input.strip()}\n\n")
f.write(f"โœ… Summary:\n{st.session_state['summary'].strip()}\n")
f.write("="*50 + "\n\n")
st.success("๐Ÿ“Œ Summary saved to history!")
except Exception as e:
st.error(f"โŒ Failed to save summary: {e}")
# ๐Ÿ“š View Summary History
if st.checkbox("๐Ÿ“š Show Summary History"):
try:
with open("summary_history.txt", "r", encoding="utf-8") as f:
history = f.read()
st.text_area("๐Ÿ—‚๏ธ Summary History", value=history, height=300)
except FileNotFoundError:
st.info("โ„น๏ธ No history found yet.")
# ๐Ÿ“Š Export as CSV
if st.button("โฌ‡๏ธ Export History as CSV"):
try:
summaries = []
with open("summary_history.txt", "r", encoding="utf-8") as f:
lines = f.read().split("="*50)
for entry in lines:
if "๐Ÿ•’ Timestamp" in entry:
lines_dict = {
"Timestamp": entry.split("๐Ÿ•’ Timestamp: ")[1].split("\n")[0].strip(),
"Model": entry.split("๐Ÿ”น Model Used: ")[1].split("\n")[0].strip(),
"Mode": entry.split("๐Ÿ”ธ Mode: ")[1].split("\n")[0].strip(),
"Original_Text": entry.split("๐Ÿ“ Original Text:\n")[1].split("\n\n")[0].strip(),
"Summary": entry.split("โœ… Summary:\n")[1].strip()
}
summaries.append(lines_dict)
df = pd.DataFrame(summaries)
csv = df.to_csv(index=False).encode('utf-8')
st.download_button("๐Ÿ“„ Download CSV File", csv, "summary_history.csv", "text/csv")
except Exception as e:
st.error(f"โŒ Failed to export as CSV: {e}")
else:
st.info("โ„น๏ธ Your summary will appear here once generated.")
# ------------------------๐Ÿ”š FOOTER ------------------------
st.markdown("<hr>", unsafe_allow_html=True)
st.markdown(
"<small>๐Ÿš€ Built by <b>MULA VAMSHI๐Ÿค</b> using Hugging Face Transformers, Streamlit & Lottie</small>",
unsafe_allow_html=True
)