Spaces:
Runtime error
Runtime error
iteration
Browse files
app.py
CHANGED
|
@@ -5,26 +5,38 @@ import torch
|
|
| 5 |
from torch import nn
|
| 6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 7 |
|
|
|
|
| 8 |
defaultTxt = "I hate you cancerous insects so much"
|
| 9 |
-
txt = st.text_area(
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# run encoding through model to get classification output
|
| 17 |
-
#
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
# transform logit to get probabilities
|
| 21 |
-
# e.g. tensor([[9.9996e-01, 4.2627e-05]], grad_fn=<SoftmaxBackward0>)
|
| 22 |
-
# first indice is neutral, second is toxic
|
| 23 |
prediction = nn.functional.softmax(result.logits, dim=-1)
|
| 24 |
neutralProb = prediction.data[0][0]
|
| 25 |
toxicProb = prediction.data[0][1]
|
| 26 |
|
| 27 |
-
#
|
| 28 |
# Neutral: 0.0052
|
| 29 |
# Toxic: 0.9948
|
| 30 |
st.write("Classification Probabilities")
|
|
|
|
| 5 |
from torch import nn
|
| 6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 7 |
|
| 8 |
+
option = st.selectbox("Select a toxicity analysis model:", ("RoBERTa", "DistilBERT", "XLM-RoBERTa"))
|
| 9 |
defaultTxt = "I hate you cancerous insects so much"
|
| 10 |
+
txt = st.text_area("Text to analyze", defaultTxt)
|
| 11 |
|
| 12 |
+
# Load tokenizer and model weights, try to default to RoBERTa.
|
| 13 |
+
match option:
|
| 14 |
+
case "RoBERTa":
|
| 15 |
+
tokenizerPath = "s-nlp/roberta_toxicity_classifier"
|
| 16 |
+
modelPath = "s-nlp/roberta_toxicity_classifier"
|
| 17 |
+
case "DistilBERT":
|
| 18 |
+
tokenizerPath = "citizenlab/distilbert-base-multilingual-cased-toxicity"
|
| 19 |
+
modelPath = "citizenlab/distilbert-base-multilingual-cased-toxicity"
|
| 20 |
+
case "XLM-RoBERTa":
|
| 21 |
+
tokenizerPath = "unitary/multilingual-toxic-xlm-roberta"
|
| 22 |
+
modelPath = "unitary/multilingual-toxic-xlm-roberta"
|
| 23 |
+
case _:
|
| 24 |
+
tokenizerPath = "s-nlp/roberta_toxicity_classifier"
|
| 25 |
+
modelPath = "s-nlp/roberta_toxicity_classifier"
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizerPath)
|
| 27 |
+
model = AutoModelForSequenceClassification.from_pretrained(modelPath)
|
| 28 |
|
| 29 |
# run encoding through model to get classification output
|
| 30 |
+
# RoBERTA: [0]: neutral, [1]: toxic
|
| 31 |
+
encoding = tokenizer.encode(txt, return_tensors='pt')
|
| 32 |
+
result = model(encoding)
|
| 33 |
|
| 34 |
# transform logit to get probabilities
|
|
|
|
|
|
|
| 35 |
prediction = nn.functional.softmax(result.logits, dim=-1)
|
| 36 |
neutralProb = prediction.data[0][0]
|
| 37 |
toxicProb = prediction.data[0][1]
|
| 38 |
|
| 39 |
+
# Expected returns from RoBERTa on default text:
|
| 40 |
# Neutral: 0.0052
|
| 41 |
# Toxic: 0.9948
|
| 42 |
st.write("Classification Probabilities")
|