Spaces:
Running
Running
Upload 2 files
Browse files- app.py +60 -0
- requirements.txt +0 -0
app.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
import spaces
|
| 5 |
+
|
| 6 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 7 |
+
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 9 |
+
"Qwen/Qwen2-0.5B-Instruct",
|
| 10 |
+
torch_dtype="auto",
|
| 11 |
+
device_map="auto"
|
| 12 |
+
).to(device)
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
| 14 |
+
|
| 15 |
+
@spaces.GPU
|
| 16 |
+
|
| 17 |
+
def chatbot(user_input, history):
|
| 18 |
+
system_message = {"role": "system", "content": "You are a helpful assistant."}
|
| 19 |
+
messages = history + [{"role": "user", "content": user_input}]
|
| 20 |
+
|
| 21 |
+
if len(history) == 0:
|
| 22 |
+
messages.insert(0, system_message)
|
| 23 |
+
|
| 24 |
+
text = tokenizer.apply_chat_template(
|
| 25 |
+
messages,
|
| 26 |
+
tokenize=False,
|
| 27 |
+
add_generation_prompt=True
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
| 31 |
+
attention_mask = torch.ones(model_inputs.input_ids.shape, device=device)
|
| 32 |
+
|
| 33 |
+
generated_ids = model.generate(
|
| 34 |
+
model_inputs.input_ids,
|
| 35 |
+
attention_mask=attention_mask,
|
| 36 |
+
max_new_tokens=512
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
generated_ids = [
|
| 40 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 44 |
+
|
| 45 |
+
history.append({"role": "user", "content": user_input})
|
| 46 |
+
history.append({"role": "assistant", "content": response})
|
| 47 |
+
|
| 48 |
+
gradio_history = [[msg["role"], msg["content"]] for msg in history]
|
| 49 |
+
|
| 50 |
+
return gradio_history, history
|
| 51 |
+
|
| 52 |
+
with gr.Blocks() as demo:
|
| 53 |
+
chatbot_interface = gr.Chatbot()
|
| 54 |
+
state = gr.State([])
|
| 55 |
+
|
| 56 |
+
with gr.Row():
|
| 57 |
+
txt = gr.Textbox(show_label=False, placeholder="Ask anything")
|
| 58 |
+
txt.submit(chatbot, [txt, state], [chatbot_interface, state])
|
| 59 |
+
|
| 60 |
+
demo.launch()
|
requirements.txt
ADDED
|
Binary file (332 Bytes). View file
|
|
|