video function
Browse files
app.py
CHANGED
|
@@ -200,13 +200,52 @@ def inference(img, dsdg_thresh):
|
|
| 200 |
x2 = x + w
|
| 201 |
y2 = y + h
|
| 202 |
bbox = (x, y, x2, y2)
|
| 203 |
-
img_deepix, confidences_deepix, cls_deepix = deepix_model_inference(img, bbox)
|
| 204 |
img_dsdg, confidences_dsdg, cls_dsdg = dsdg_model_inference(img, bbox, dsdg_thresh)
|
| 205 |
-
return
|
| 206 |
else:
|
| 207 |
return img, {}, None, img, {}, None
|
| 208 |
|
| 209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
def upload_to_s3(image_array, app_version, *labels):
|
| 211 |
folder = 'demo'
|
| 212 |
bucket_name = 'livenessng'
|
|
@@ -244,15 +283,15 @@ demo = gr.Blocks()
|
|
| 244 |
with demo:
|
| 245 |
with gr.Row():
|
| 246 |
with gr.Column():
|
| 247 |
-
|
| 248 |
dsdg_thresh = gr.Slider(value=DSDG_THRESHOLD, label='DSDG threshold')
|
| 249 |
btn_run = gr.Button(value="Run")
|
| 250 |
with gr.Column():
|
| 251 |
outputs=[
|
| 252 |
-
gr.
|
| 253 |
gr.Label(num_top_classes=2, label='DeePixBiS'),
|
| 254 |
gr.Number(visible=False, value=-1),
|
| 255 |
-
gr.
|
| 256 |
gr.Label(num_top_classes=2, label='DSDG'),
|
| 257 |
gr.Number(visible=False, value=-1)]
|
| 258 |
with gr.Column():
|
|
@@ -260,13 +299,13 @@ with demo:
|
|
| 260 |
["Spoof", "Real", "None"], label="True label", type='index')
|
| 261 |
flag = gr.Button(value="Flag")
|
| 262 |
status = gr.Textbox()
|
| 263 |
-
example_block = gr.Examples(examples, [
|
| 264 |
|
| 265 |
-
btn_run.click(
|
| 266 |
app_version_block = gr.Textbox(value=app_version, visible=False)
|
| 267 |
flag.click(
|
| 268 |
upload_to_s3,
|
| 269 |
-
[
|
| 270 |
[status], show_progress=True)
|
| 271 |
|
| 272 |
|
|
|
|
| 200 |
x2 = x + w
|
| 201 |
y2 = y + h
|
| 202 |
bbox = (x, y, x2, y2)
|
| 203 |
+
# img_deepix, confidences_deepix, cls_deepix = deepix_model_inference(img, bbox)
|
| 204 |
img_dsdg, confidences_dsdg, cls_dsdg = dsdg_model_inference(img, bbox, dsdg_thresh)
|
| 205 |
+
return img, {}, 2, img_dsdg, confidences_dsdg, cls_dsdg
|
| 206 |
else:
|
| 207 |
return img, {}, None, img, {}, None
|
| 208 |
|
| 209 |
|
| 210 |
+
def process_video(vid_path, dsdg_thresh):
|
| 211 |
+
cap = cv.VideoCapture(vid_path)
|
| 212 |
+
|
| 213 |
+
input_width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
|
| 214 |
+
input_height = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
|
| 215 |
+
|
| 216 |
+
# Set video codec and create VideoWriter object to save the output video
|
| 217 |
+
fourcc = cv.VideoWriter_fourcc(*'XVID')
|
| 218 |
+
output_vid_path = 'output_dsdg.mp4'
|
| 219 |
+
out_dsdg = cv.VideoWriter(output_vid_path, fourcc, 6.0, (input_width, input_height))
|
| 220 |
+
|
| 221 |
+
frame_counter = 0
|
| 222 |
+
confidences_arr = []
|
| 223 |
+
while cap.isOpened():
|
| 224 |
+
ret, frame = cap.read()
|
| 225 |
+
if not ret:
|
| 226 |
+
break
|
| 227 |
+
|
| 228 |
+
# Process only every 5th frame
|
| 229 |
+
if frame_counter % 5 == 0:
|
| 230 |
+
# Run inference on the current frame
|
| 231 |
+
_, _, _, img_dsdg, confidences_dsdg, _ = inference(frame, dsdg_thresh)
|
| 232 |
+
confidences_arr.append(confidences_dsdg['Real confidence'])
|
| 233 |
+
|
| 234 |
+
# Resize the DSDG frame to match the input video dimensions
|
| 235 |
+
img_dsdg = cv.resize(img_dsdg, (input_width, input_height))
|
| 236 |
+
|
| 237 |
+
# Write the DSDG frame to the output video
|
| 238 |
+
out_dsdg.write(img_dsdg)
|
| 239 |
+
|
| 240 |
+
frame_counter += 1
|
| 241 |
+
avg_conf = sum(confidences_arr) / len(confidences_arr)
|
| 242 |
+
confidences_dsdg = {'Average real confidence': avg_conf}
|
| 243 |
+
# Release resources
|
| 244 |
+
cap.release()
|
| 245 |
+
out_dsdg.release()
|
| 246 |
+
return vid_path, {'Not supported right now': 0}, 2, output_vid_path, avg_conf, avg_conf
|
| 247 |
+
|
| 248 |
+
|
| 249 |
def upload_to_s3(image_array, app_version, *labels):
|
| 250 |
folder = 'demo'
|
| 251 |
bucket_name = 'livenessng'
|
|
|
|
| 283 |
with demo:
|
| 284 |
with gr.Row():
|
| 285 |
with gr.Column():
|
| 286 |
+
input_vid = gr.Video(format='mp4', source='webcam')
|
| 287 |
dsdg_thresh = gr.Slider(value=DSDG_THRESHOLD, label='DSDG threshold')
|
| 288 |
btn_run = gr.Button(value="Run")
|
| 289 |
with gr.Column():
|
| 290 |
outputs=[
|
| 291 |
+
gr.Video(label='DeePixBiS', format='mp4'),
|
| 292 |
gr.Label(num_top_classes=2, label='DeePixBiS'),
|
| 293 |
gr.Number(visible=False, value=-1),
|
| 294 |
+
gr.Video(label='DSDG', format='mp4'),
|
| 295 |
gr.Label(num_top_classes=2, label='DSDG'),
|
| 296 |
gr.Number(visible=False, value=-1)]
|
| 297 |
with gr.Column():
|
|
|
|
| 299 |
["Spoof", "Real", "None"], label="True label", type='index')
|
| 300 |
flag = gr.Button(value="Flag")
|
| 301 |
status = gr.Textbox()
|
| 302 |
+
# example_block = gr.Examples(examples, [input_vid], outputs)
|
| 303 |
|
| 304 |
+
btn_run.click(process_video, [input_vid, dsdg_thresh], outputs)
|
| 305 |
app_version_block = gr.Textbox(value=app_version, visible=False)
|
| 306 |
flag.click(
|
| 307 |
upload_to_s3,
|
| 308 |
+
[input_vid, app_version_block, radio]+[outputs[2], outputs[5]],
|
| 309 |
[status], show_progress=True)
|
| 310 |
|
| 311 |
|