Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,19 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import torch
|
| 4 |
-
import re
|
| 5 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 6 |
from peft import PeftModel
|
| 7 |
from text_processing import TextProcessor
|
| 8 |
import gc
|
| 9 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Configure page
|
| 12 |
st.set_page_config(
|
|
@@ -26,6 +33,25 @@ if 'processing_started' not in st.session_state:
|
|
| 26 |
st.session_state.processing_started = False
|
| 27 |
if 'focused_summary_generated' not in st.session_state:
|
| 28 |
st.session_state.focused_summary_generated = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
def load_model(model_type):
|
| 31 |
"""Load appropriate model based on type with proper memory management"""
|
|
@@ -72,6 +98,26 @@ def load_model(model_type):
|
|
| 72 |
st.error(f"Error loading model: {str(e)}")
|
| 73 |
raise
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
def cleanup_model(model, tokenizer):
|
| 76 |
"""Properly cleanup model resources"""
|
| 77 |
try:
|
|
@@ -82,9 +128,7 @@ def cleanup_model(model, tokenizer):
|
|
| 82 |
except Exception:
|
| 83 |
pass
|
| 84 |
|
| 85 |
-
|
| 86 |
@st.cache_data
|
| 87 |
-
|
| 88 |
def process_excel(uploaded_file):
|
| 89 |
"""Process uploaded Excel file"""
|
| 90 |
try:
|
|
@@ -119,7 +163,6 @@ def process_excel(uploaded_file):
|
|
| 119 |
st.error("Please check if your file is in the correct Excel format (.xlsx or .xls)")
|
| 120 |
return None
|
| 121 |
|
| 122 |
-
|
| 123 |
def validate_excel_structure(df):
|
| 124 |
"""Validate the structure and content of the Excel file"""
|
| 125 |
validation_messages = []
|
|
@@ -150,147 +193,142 @@ def validate_excel_structure(df):
|
|
| 150 |
|
| 151 |
return len(validation_messages) == 0, validation_messages
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
def preprocess_text(text):
|
| 156 |
-
"""
|
| 157 |
if not isinstance(text, str) or not text.strip():
|
| 158 |
return text
|
| 159 |
|
| 160 |
-
#
|
| 161 |
-
|
| 162 |
|
| 163 |
-
#
|
| 164 |
-
|
| 165 |
|
| 166 |
-
#
|
| 167 |
-
|
|
|
|
|
|
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
def post_process_summary(summary):
|
| 172 |
-
"""Clean up and improve summary coherence"""
|
| 173 |
-
if not summary:
|
| 174 |
-
return summary
|
| 175 |
-
|
| 176 |
-
# Split into sentences
|
| 177 |
-
sentences = [s.strip() for s in summary.split('.')]
|
| 178 |
-
sentences = [s for s in sentences if s] # Remove empty sentences
|
| 179 |
-
|
| 180 |
-
# Fix common issues
|
| 181 |
-
processed_sentences = []
|
| 182 |
-
for i, sentence in enumerate(sentences):
|
| 183 |
-
# Remove redundant words/phrases
|
| 184 |
-
sentence = sentence.replace(" and and ", " and ")
|
| 185 |
-
sentence = sentence.replace("appointment and appointment", "appointment")
|
| 186 |
-
|
| 187 |
-
# Fix common grammatical issues
|
| 188 |
-
sentence = sentence.replace("Cancers distress", "Cancer distress")
|
| 189 |
-
sentence = sentence.replace(" ", " ") # Remove double spaces
|
| 190 |
-
|
| 191 |
-
# Capitalize first letter of each sentence
|
| 192 |
-
sentence = sentence.capitalize()
|
| 193 |
-
|
| 194 |
-
# Add to processed sentences if not empty
|
| 195 |
-
if sentence.strip():
|
| 196 |
-
processed_sentences.append(sentence)
|
| 197 |
|
| 198 |
-
#
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
"""Generate improved summary with better prompt and validation"""
|
| 207 |
-
if not isinstance(text, str) or not text.strip():
|
| 208 |
-
return "No abstract available to summarize."
|
| 209 |
|
| 210 |
-
#
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
"1. Background and objectives\n"
|
| 214 |
-
"2. Methods\n"
|
| 215 |
-
"3. Key findings with specific numbers/percentages\n"
|
| 216 |
-
"4. Main conclusions\n"
|
| 217 |
-
"Original text: " + preprocess_text(text)
|
| 218 |
-
)
|
| 219 |
|
| 220 |
-
#
|
| 221 |
-
|
| 222 |
-
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
**{
|
| 227 |
-
"input_ids": inputs["input_ids"],
|
| 228 |
-
"attention_mask": inputs["attention_mask"],
|
| 229 |
-
"max_length": 200,
|
| 230 |
-
"min_length": 50,
|
| 231 |
-
"num_beams": 5,
|
| 232 |
-
"length_penalty": 1.5,
|
| 233 |
-
"no_repeat_ngram_size": 3,
|
| 234 |
-
"temperature": 0.7,
|
| 235 |
-
"repetition_penalty": 1.5
|
| 236 |
-
}
|
| 237 |
-
)
|
| 238 |
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
-
#
|
| 242 |
-
|
|
|
|
| 243 |
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
def validate_summary(summary, original_text):
|
| 267 |
-
"""Validate summary content against original text"""
|
| 268 |
-
# Check for age inconsistencies
|
| 269 |
-
age_mentions = re.findall(r'(\d+\.?\d*)\s*years?', summary.lower())
|
| 270 |
-
if len(age_mentions) > 1: # Multiple age mentions
|
| 271 |
-
return False
|
| 272 |
|
| 273 |
-
#
|
| 274 |
-
|
| 275 |
-
unique_sentences = set(s.strip().lower() for s in sentences if s.strip())
|
| 276 |
-
if len(sentences) - len(unique_sentences) > 1: # More than one duplicate
|
| 277 |
-
return False
|
| 278 |
|
| 279 |
-
#
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
formatted_abstracts = [preprocess_text(abstract) for abstract in abstracts]
|
| 291 |
-
combined_input = f"Question: {question} Abstracts: " + " [SEP] ".join(formatted_abstracts)
|
| 292 |
|
| 293 |
-
inputs = tokenizer(combined_input, return_tensors="pt", max_length=1024, truncation=True)
|
| 294 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 295 |
|
| 296 |
with torch.no_grad():
|
|
@@ -298,15 +336,33 @@ def generate_focused_summary(question, abstracts, model, tokenizer):
|
|
| 298 |
**{
|
| 299 |
"input_ids": inputs["input_ids"],
|
| 300 |
"attention_mask": inputs["attention_mask"],
|
| 301 |
-
"max_length":
|
| 302 |
-
"min_length":
|
| 303 |
"num_beams": 4,
|
| 304 |
"length_penalty": 2.0,
|
| 305 |
-
"
|
|
|
|
|
|
|
| 306 |
}
|
| 307 |
)
|
|
|
|
|
|
|
| 308 |
|
| 309 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
|
| 311 |
def create_filter_controls(df, sort_column):
|
| 312 |
"""Create appropriate filter controls based on the selected column"""
|
|
@@ -367,6 +423,7 @@ def create_filter_controls(df, sort_column):
|
|
| 367 |
|
| 368 |
return filtered_df
|
| 369 |
|
|
|
|
| 370 |
def main():
|
| 371 |
st.title("🔬 Biomedical Papers Analysis")
|
| 372 |
|
|
@@ -429,26 +486,26 @@ def main():
|
|
| 429 |
# Individual Summaries Section
|
| 430 |
st.header("📝 Individual Paper Summaries")
|
| 431 |
|
|
|
|
| 432 |
# Generate summaries if not already done
|
| 433 |
if st.session_state.summaries is None:
|
| 434 |
try:
|
| 435 |
with st.spinner("Generating individual paper summaries..."):
|
| 436 |
-
model, tokenizer =
|
| 437 |
-
|
| 438 |
-
|
|
|
|
| 439 |
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
st.
|
| 446 |
-
cleanup_model(model, tokenizer)
|
| 447 |
-
progress_bar.empty()
|
| 448 |
|
| 449 |
except Exception as e:
|
| 450 |
st.error(f"Error generating summaries: {str(e)}")
|
| 451 |
-
|
| 452 |
|
| 453 |
# Display summaries with improved sorting and filtering
|
| 454 |
if st.session_state.summaries is not None:
|
|
@@ -543,7 +600,7 @@ def main():
|
|
| 543 |
</div>
|
| 544 |
</div>
|
| 545 |
""", unsafe_allow_html=True)
|
| 546 |
-
|
| 547 |
with paper_info_cols[1]: # SUMMARY column
|
| 548 |
st.markdown('<div class="paper-section"><div class="section-header">SUMMARY</div>', unsafe_allow_html=True)
|
| 549 |
st.markdown(f"""
|
|
@@ -554,54 +611,68 @@ def main():
|
|
| 554 |
|
| 555 |
# Add spacing between papers
|
| 556 |
st.markdown("<div style='margin-bottom: 20px;'></div>", unsafe_allow_html=True)
|
| 557 |
-
|
| 558 |
-
# Question-focused Summary Section (only if question provided)
|
| 559 |
-
if question.strip():
|
| 560 |
-
st.header("❓ Question-focused Summary")
|
| 561 |
-
|
| 562 |
-
if not st.session_state.get('focused_summary_generated', False):
|
| 563 |
-
try:
|
| 564 |
-
with st.spinner("Analyzing relevant papers..."):
|
| 565 |
-
# Initialize text processor if needed
|
| 566 |
-
if st.session_state.text_processor is None:
|
| 567 |
-
st.session_state.text_processor = TextProcessor()
|
| 568 |
-
|
| 569 |
-
# Find relevant abstracts
|
| 570 |
-
results = st.session_state.text_processor.find_most_relevant_abstracts(
|
| 571 |
-
question,
|
| 572 |
-
df['Abstract'].tolist(),
|
| 573 |
-
top_k=5
|
| 574 |
-
)
|
| 575 |
-
|
| 576 |
-
# Load question-focused model
|
| 577 |
-
model, tokenizer = load_model("question_focused")
|
| 578 |
-
|
| 579 |
-
# Generate focused summary
|
| 580 |
-
relevant_abstracts = df['Abstract'].iloc[results['top_indices']].tolist()
|
| 581 |
-
focused_summary = generate_focused_summary(
|
| 582 |
-
question,
|
| 583 |
-
relevant_abstracts,
|
| 584 |
-
model,
|
| 585 |
-
tokenizer
|
| 586 |
-
)
|
| 587 |
-
|
| 588 |
-
# Store results
|
| 589 |
-
st.session_state.focused_summary = focused_summary
|
| 590 |
-
st.session_state.relevant_papers = df.iloc[results['top_indices']]
|
| 591 |
-
st.session_state.relevance_scores = results['scores']
|
| 592 |
-
st.session_state.focused_summary_generated = True
|
| 593 |
-
|
| 594 |
-
# Cleanup second model
|
| 595 |
-
cleanup_model(model, tokenizer)
|
| 596 |
|
| 597 |
-
|
| 598 |
-
|
|
|
|
| 599 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 600 |
# Display focused summary results
|
| 601 |
if st.session_state.get('focused_summary_generated', False):
|
| 602 |
st.subheader("Summary")
|
| 603 |
st.write(st.session_state.focused_summary)
|
| 604 |
-
|
| 605 |
st.subheader("Most Relevant Papers")
|
| 606 |
relevant_papers = st.session_state.relevant_papers[
|
| 607 |
['Article Title', 'Authors', 'Publication Year', 'DOI']
|
|
@@ -609,6 +680,8 @@ def main():
|
|
| 609 |
relevant_papers['Relevance Score'] = st.session_state.relevance_scores
|
| 610 |
relevant_papers['Publication Year'] = relevant_papers['Publication Year'].astype(int)
|
| 611 |
st.dataframe(relevant_papers, hide_index=True)
|
|
|
|
|
|
|
| 612 |
|
| 613 |
if __name__ == "__main__":
|
| 614 |
main()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import torch
|
| 4 |
+
import re
|
| 5 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 6 |
from peft import PeftModel
|
| 7 |
from text_processing import TextProcessor
|
| 8 |
import gc
|
| 9 |
from pathlib import Path
|
| 10 |
+
import concurrent.futures
|
| 11 |
+
import time
|
| 12 |
+
import nltk
|
| 13 |
+
from nltk.tokenize import sent_tokenize
|
| 14 |
+
from concurrent.futures import ThreadPoolExecutor # Add this import
|
| 15 |
+
|
| 16 |
+
nltk.download('punkt')
|
| 17 |
|
| 18 |
# Configure page
|
| 19 |
st.set_page_config(
|
|
|
|
| 33 |
st.session_state.processing_started = False
|
| 34 |
if 'focused_summary_generated' not in st.session_state:
|
| 35 |
st.session_state.focused_summary_generated = False
|
| 36 |
+
if 'current_model' not in st.session_state:
|
| 37 |
+
st.session_state.current_model = None
|
| 38 |
+
if 'current_tokenizer' not in st.session_state:
|
| 39 |
+
st.session_state.current_tokenizer = None
|
| 40 |
+
if 'model_type' not in st.session_state:
|
| 41 |
+
st.session_state.model_type = None
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# TextProcessor class definition
|
| 45 |
+
try:
|
| 46 |
+
from text_processing import TextProcessor
|
| 47 |
+
except ImportError:
|
| 48 |
+
class TextProcessor:
|
| 49 |
+
def find_most_relevant_abstracts(self, question, abstracts, top_k=5):
|
| 50 |
+
return {
|
| 51 |
+
'top_indices': list(range(min(top_k, len(abstracts)))),
|
| 52 |
+
'scores': [1.0] * min(top_k, len(abstracts))
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
|
| 56 |
def load_model(model_type):
|
| 57 |
"""Load appropriate model based on type with proper memory management"""
|
|
|
|
| 98 |
st.error(f"Error loading model: {str(e)}")
|
| 99 |
raise
|
| 100 |
|
| 101 |
+
def get_model(model_type):
|
| 102 |
+
"""Get model from session state or load if needed"""
|
| 103 |
+
try:
|
| 104 |
+
if (st.session_state.current_model is None or
|
| 105 |
+
st.session_state.model_type != model_type):
|
| 106 |
+
# Clean up existing model
|
| 107 |
+
if st.session_state.current_model is not None:
|
| 108 |
+
cleanup_model(st.session_state.current_model,
|
| 109 |
+
st.session_state.current_tokenizer)
|
| 110 |
+
# Load new model
|
| 111 |
+
model, tokenizer = load_model(model_type)
|
| 112 |
+
st.session_state.current_model = model
|
| 113 |
+
st.session_state.current_tokenizer = tokenizer
|
| 114 |
+
st.session_state.model_type = model_type
|
| 115 |
+
return st.session_state.current_model, st.session_state.current_tokenizer
|
| 116 |
+
except Exception as e:
|
| 117 |
+
st.error(f"Error loading model: {str(e)}")
|
| 118 |
+
st.session_state.processing_started = False
|
| 119 |
+
return None, None
|
| 120 |
+
|
| 121 |
def cleanup_model(model, tokenizer):
|
| 122 |
"""Properly cleanup model resources"""
|
| 123 |
try:
|
|
|
|
| 128 |
except Exception:
|
| 129 |
pass
|
| 130 |
|
|
|
|
| 131 |
@st.cache_data
|
|
|
|
| 132 |
def process_excel(uploaded_file):
|
| 133 |
"""Process uploaded Excel file"""
|
| 134 |
try:
|
|
|
|
| 163 |
st.error("Please check if your file is in the correct Excel format (.xlsx or .xls)")
|
| 164 |
return None
|
| 165 |
|
|
|
|
| 166 |
def validate_excel_structure(df):
|
| 167 |
"""Validate the structure and content of the Excel file"""
|
| 168 |
validation_messages = []
|
|
|
|
| 193 |
|
| 194 |
return len(validation_messages) == 0, validation_messages
|
| 195 |
|
|
|
|
|
|
|
| 196 |
def preprocess_text(text):
|
| 197 |
+
"""Enhanced text preprocessing with improved header and list handling"""
|
| 198 |
if not isinstance(text, str) or not text.strip():
|
| 199 |
return text
|
| 200 |
|
| 201 |
+
# Initial cleanup
|
| 202 |
+
text = re.sub(r'\s+', ' ', text.strip())
|
| 203 |
|
| 204 |
+
# Standardize case for specific terms (e.g., PRIME -> Prime)
|
| 205 |
+
text = re.sub(r'\b([A-Z]{2,})\b', lambda m: m.group(1).title(), text)
|
| 206 |
|
| 207 |
+
# Fix spacing around punctuation and parentheses
|
| 208 |
+
text = re.sub(r'\s*:\s*', ': ', text)
|
| 209 |
+
text = re.sub(r'\s*,\s*', ', ', text)
|
| 210 |
+
text = re.sub(r'\(\s*([ivx\d]+)\s*\)', r'(\1)', text)
|
| 211 |
|
| 212 |
+
# Convert numbered lists to consistent format
|
| 213 |
+
text = re.sub(r'(?m)^\s*(\d+)\.\s*', r'(\1) ', text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
+
# Normalize section headers (using comprehensive patterns)
|
| 216 |
+
section_patterns = {
|
| 217 |
+
r'\b(?:Introduction|Background|Objectives|Purpose|Context)\s*:': 'Background and Objectives: ',
|
| 218 |
+
r'\b(?:Methods|Materials and Methods|Approach|Study Design|Experimental Design)\s*:': 'Methods: ',
|
| 219 |
+
r'\b(?:Results|Findings|Observations|Key Findings)\s*:': 'Results: ',
|
| 220 |
+
r'\b(?:Discussion|Analysis|Implications|Interpretation)\s*:': 'Discussion: ',
|
| 221 |
+
r'\b(?:Conclusion|Conclusions|Summary|Final Remarks)\s*:': 'Conclusions: '
|
| 222 |
+
}
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
+
# Remove nested headers
|
| 225 |
+
nested_header_pattern = r'\d+\.\s*(?:Background|Objectives|Methods|Results|Discussion|Conclusions)\s*:'
|
| 226 |
+
text = re.sub(nested_header_pattern, '', text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
+
# Standardize section headers
|
| 229 |
+
for pattern, replacement in section_patterns.items():
|
| 230 |
+
text = re.sub(pattern, replacement, text, flags=re.IGNORECASE)
|
| 231 |
|
| 232 |
+
# Split merged section headers
|
| 233 |
+
text = re.sub(r'(?i)Results\s+and\s+Conclusions:', 'Results: ', text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
+
# Handle special characters and normalize spacing
|
| 236 |
+
text = re.sub(r'[“”]', '"', text) # Correctly handle double quotes
|
| 237 |
+
text = re.sub(r"[‘’]", "'", text) # Correctly handle single quotes
|
| 238 |
+
text = re.sub(r'\s*-\s*', '-', text)
|
| 239 |
|
| 240 |
+
# Tokenize and capitalize sentences
|
| 241 |
+
sentences = re.split(r'(?<=\w[.!?])\s+|\n(?=\d+\.|\(\w+\)|-)', text)
|
| 242 |
+
formatted_sentences = [s.strip().capitalize() for s in sentences if s.strip()]
|
| 243 |
|
| 244 |
+
return ' '.join(formatted_sentences)
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
def post_process_summary(summary):
|
| 249 |
+
"""Enhanced summary post-processing with improved formatting."""
|
| 250 |
+
if not summary:
|
| 251 |
+
return summary
|
| 252 |
+
|
| 253 |
+
# Step 1: Remove empty or redundant headers
|
| 254 |
+
summary = re.sub(r'\b(?:Background|Objectives|Methods|Results|Conclusions)\s*:\s*\.?\s*', '', summary)
|
| 255 |
+
|
| 256 |
+
# Step 2: Fix spacing issues in lists and parentheses
|
| 257 |
+
summary = re.sub(r'\(\s*([ivx\d]+)\s*\)', r'(\1)', summary) # Fix space inside parentheses
|
| 258 |
+
summary = re.sub(r'\s*,\s*(\([ivx\d]+\))', r', \1', summary) # Fix spacing before list items
|
| 259 |
+
|
| 260 |
+
# Step 3: Ensure proper punctuation and spacing
|
| 261 |
+
summary = re.sub(r'(?<=[.!?])\s*([A-Z])', r' \1', summary) # Add space after punctuation
|
| 262 |
+
summary = re.sub(r'\s*:\s*', ': ', summary) # Fix spacing around colons
|
| 263 |
+
|
| 264 |
+
# Step 4: Remove sections with too little content
|
| 265 |
+
sections = [s.strip() for s in summary.split('\n') if len(s.split()) > 3]
|
| 266 |
+
summary = ' '.join(sections)
|
| 267 |
+
|
| 268 |
+
# Step 5: Remove multiple periods
|
| 269 |
+
summary = re.sub(r'\.\.+', '.', summary)
|
| 270 |
+
|
| 271 |
+
# Step 6: Ensure summary ends with a single period
|
| 272 |
+
summary = summary.strip()
|
| 273 |
+
if not summary.endswith('.'):
|
| 274 |
+
summary += '.'
|
| 275 |
+
|
| 276 |
+
return summary
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
def generate_focused_summary(question, abstracts, model, tokenizer):
|
| 280 |
+
"""Generate a structured summary based on the given question and abstracts."""
|
| 281 |
+
# Preprocess and clean abstracts
|
| 282 |
+
formatted_abstracts = [preprocess_text(abstract) for abstract in abstracts if abstract.strip()]
|
| 283 |
|
| 284 |
+
if not formatted_abstracts:
|
| 285 |
+
raise ValueError("Abstracts list is empty or improperly formatted.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
+
# Join abstracts with separator
|
| 288 |
+
abstracts_content = " [SEP] ".join(formatted_abstracts)
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
+
# Create the prompt
|
| 291 |
+
prompt = f"""
|
| 292 |
+
Generate a structured summary based on the given abstracts and the question. Follow these rules STRICTLY:
|
| 293 |
+
**QUESTION:** {question}
|
| 294 |
+
**SECTION FORMATTING RULES:**
|
| 295 |
+
1. Each section MUST start with the section name followed by ": " (e.g., "Background: ").
|
| 296 |
+
2. Each section MUST end with a period.
|
| 297 |
+
3. Write complete, grammatically correct sentences.
|
| 298 |
+
4. Do not use bullet points, lists, or combined section headers.
|
| 299 |
+
5. Maintain the exact order of sections: Background, Objectives, Methods, Results, Conclusions.
|
| 300 |
+
6. Avoid redundancies, incomplete thoughts, and cutting sentences mid-way.
|
| 301 |
+
7. Use transition words (e.g., "Additionally," "Furthermore," "Moreover") to connect ideas naturally.
|
| 302 |
+
**REQUIRED SECTIONS AND CONTENT:**
|
| 303 |
+
1. **Background**:
|
| 304 |
+
- Provide the context and motivation for the study.
|
| 305 |
+
- Do not mention objectives, methods, or results in this section.
|
| 306 |
+
2. **Objectives**:
|
| 307 |
+
- Clearly state the aim(s) of the study.
|
| 308 |
+
- Avoid referencing any methods or findings.
|
| 309 |
+
3. **Methods**:
|
| 310 |
+
- Describe the approach, tools, and procedures used.
|
| 311 |
+
- Do not include any findings or results in this section.
|
| 312 |
+
4. **Results**:
|
| 313 |
+
- Summarize the key findings, including relevant statistics and outcomes.
|
| 314 |
+
- Mention implications only if explicitly stated in the abstracts.
|
| 315 |
+
5. **Conclusions**:
|
| 316 |
+
- Highlight the overall interpretation of findings.
|
| 317 |
+
- Emphasize the significance and implications of the study.
|
| 318 |
+
**CRITICAL FORMAT RULES:**
|
| 319 |
+
1. Each section title must be followed by a colon and a space.
|
| 320 |
+
2. All sentences must be grammatically complete and coherent.
|
| 321 |
+
3. Avoid bullet points, lists, and repeated sections.
|
| 322 |
+
4. End each section with a period.
|
| 323 |
+
**INPUT ABSTRACTS:** {abstracts_content}
|
| 324 |
+
"""
|
| 325 |
|
| 326 |
+
# Tokenize input (use the correct variable `prompt` here)
|
| 327 |
+
inputs = tokenizer(prompt,
|
| 328 |
+
return_tensors="pt",
|
| 329 |
+
max_length=1024,
|
| 330 |
+
truncation=True)
|
|
|
|
|
|
|
| 331 |
|
|
|
|
| 332 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 333 |
|
| 334 |
with torch.no_grad():
|
|
|
|
| 336 |
**{
|
| 337 |
"input_ids": inputs["input_ids"],
|
| 338 |
"attention_mask": inputs["attention_mask"],
|
| 339 |
+
"max_length": 280,
|
| 340 |
+
"min_length": 100,
|
| 341 |
"num_beams": 4,
|
| 342 |
"length_penalty": 2.0,
|
| 343 |
+
"no_repeat_ngram_size": 2,
|
| 344 |
+
"temperature": 0.7,
|
| 345 |
+
"do_sample": False
|
| 346 |
}
|
| 347 |
)
|
| 348 |
+
|
| 349 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 350 |
|
| 351 |
+
return post_process_summary(summary)
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def process_papers_in_batches(df, model, tokenizer, batch_size=2):
|
| 355 |
+
"""Process papers in batches for better efficiency"""
|
| 356 |
+
abstracts = df['Abstract'].tolist()
|
| 357 |
+
summaries = []
|
| 358 |
+
|
| 359 |
+
with ThreadPoolExecutor(max_workers=4) as executor: # Parallel processing
|
| 360 |
+
future_to_batch = {executor.submit(generate_focused_summary, "Focus on key findings and methods.", [abstract], model, tokenizer): abstract for abstract in abstracts}
|
| 361 |
+
for future in future_to_batch:
|
| 362 |
+
summaries.append(future.result())
|
| 363 |
+
|
| 364 |
+
return summaries
|
| 365 |
+
|
| 366 |
|
| 367 |
def create_filter_controls(df, sort_column):
|
| 368 |
"""Create appropriate filter controls based on the selected column"""
|
|
|
|
| 423 |
|
| 424 |
return filtered_df
|
| 425 |
|
| 426 |
+
|
| 427 |
def main():
|
| 428 |
st.title("🔬 Biomedical Papers Analysis")
|
| 429 |
|
|
|
|
| 486 |
# Individual Summaries Section
|
| 487 |
st.header("📝 Individual Paper Summaries")
|
| 488 |
|
| 489 |
+
|
| 490 |
# Generate summaries if not already done
|
| 491 |
if st.session_state.summaries is None:
|
| 492 |
try:
|
| 493 |
with st.spinner("Generating individual paper summaries..."):
|
| 494 |
+
model, tokenizer = get_model("summarize")
|
| 495 |
+
if model is None or tokenizer is None:
|
| 496 |
+
reset_processing_state()
|
| 497 |
+
return
|
| 498 |
|
| 499 |
+
start_time = time.time()
|
| 500 |
+
st.session_state.summaries = process_papers_in_batches(
|
| 501 |
+
df, model, tokenizer, batch_size=2
|
| 502 |
+
)
|
| 503 |
+
end_time = time.time()
|
| 504 |
+
st.write(f"Processing time: {end_time - start_time:.2f} seconds")
|
|
|
|
|
|
|
| 505 |
|
| 506 |
except Exception as e:
|
| 507 |
st.error(f"Error generating summaries: {str(e)}")
|
| 508 |
+
reset_processing_state()
|
| 509 |
|
| 510 |
# Display summaries with improved sorting and filtering
|
| 511 |
if st.session_state.summaries is not None:
|
|
|
|
| 600 |
</div>
|
| 601 |
</div>
|
| 602 |
""", unsafe_allow_html=True)
|
| 603 |
+
|
| 604 |
with paper_info_cols[1]: # SUMMARY column
|
| 605 |
st.markdown('<div class="paper-section"><div class="section-header">SUMMARY</div>', unsafe_allow_html=True)
|
| 606 |
st.markdown(f"""
|
|
|
|
| 611 |
|
| 612 |
# Add spacing between papers
|
| 613 |
st.markdown("<div style='margin-bottom: 20px;'></div>", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 614 |
|
| 615 |
+
# Question-focused Summary Section (only if question provided)
|
| 616 |
+
if question.strip():
|
| 617 |
+
st.header("❓ Question-focused Summary")
|
| 618 |
|
| 619 |
+
if not st.session_state.get('focused_summary_generated', False):
|
| 620 |
+
try:
|
| 621 |
+
with st.spinner("Analyzing relevant papers..."):
|
| 622 |
+
# Initialize text processor if needed
|
| 623 |
+
if st.session_state.text_processor is None:
|
| 624 |
+
st.session_state.text_processor = TextProcessor()
|
| 625 |
+
|
| 626 |
+
# Validate question
|
| 627 |
+
if not question.strip():
|
| 628 |
+
st.warning("Please enter a question first")
|
| 629 |
+
return
|
| 630 |
+
|
| 631 |
+
# Find relevant abstracts
|
| 632 |
+
results = st.session_state.text_processor.find_most_relevant_abstracts(
|
| 633 |
+
question,
|
| 634 |
+
df['Abstract'].tolist(),
|
| 635 |
+
top_k=5
|
| 636 |
+
)
|
| 637 |
+
|
| 638 |
+
if not results['top_indices']:
|
| 639 |
+
st.warning("No relevant papers found for your question")
|
| 640 |
+
return
|
| 641 |
+
|
| 642 |
+
# Load question-focused model
|
| 643 |
+
model, tokenizer = get_model("question_focused")
|
| 644 |
+
if model is None or tokenizer is None:
|
| 645 |
+
return
|
| 646 |
+
|
| 647 |
+
# Generate focused summary
|
| 648 |
+
try:
|
| 649 |
+
relevant_abstracts = df['Abstract'].iloc[results['top_indices']].tolist()
|
| 650 |
+
focused_summary = generate_focused_summary(
|
| 651 |
+
question,
|
| 652 |
+
relevant_abstracts,
|
| 653 |
+
model,
|
| 654 |
+
tokenizer
|
| 655 |
+
)
|
| 656 |
+
|
| 657 |
+
# Store results
|
| 658 |
+
st.session_state.focused_summary = focused_summary
|
| 659 |
+
st.session_state.relevant_papers = df.iloc[results['top_indices']]
|
| 660 |
+
st.session_state.relevance_scores = results['scores']
|
| 661 |
+
st.session_state.focused_summary_generated = True
|
| 662 |
+
|
| 663 |
+
finally:
|
| 664 |
+
# Cleanup second model
|
| 665 |
+
cleanup_model(model, tokenizer)
|
| 666 |
+
|
| 667 |
+
except Exception as e:
|
| 668 |
+
st.error(f"Error generating focused summary: {str(e)}")
|
| 669 |
+
reset_processing_state()
|
| 670 |
+
|
| 671 |
# Display focused summary results
|
| 672 |
if st.session_state.get('focused_summary_generated', False):
|
| 673 |
st.subheader("Summary")
|
| 674 |
st.write(st.session_state.focused_summary)
|
| 675 |
+
|
| 676 |
st.subheader("Most Relevant Papers")
|
| 677 |
relevant_papers = st.session_state.relevant_papers[
|
| 678 |
['Article Title', 'Authors', 'Publication Year', 'DOI']
|
|
|
|
| 680 |
relevant_papers['Relevance Score'] = st.session_state.relevance_scores
|
| 681 |
relevant_papers['Publication Year'] = relevant_papers['Publication Year'].astype(int)
|
| 682 |
st.dataframe(relevant_papers, hide_index=True)
|
| 683 |
+
|
| 684 |
+
|
| 685 |
|
| 686 |
if __name__ == "__main__":
|
| 687 |
main()
|