Spaces:
Sleeping
Sleeping
Update text_processing.py
Browse files- text_processing.py +23 -40
text_processing.py
CHANGED
|
@@ -6,7 +6,6 @@ from nltk.tokenize import word_tokenize
|
|
| 6 |
import nltk
|
| 7 |
import streamlit as st
|
| 8 |
|
| 9 |
-
# Download required NLTK data
|
| 10 |
try:
|
| 11 |
nltk.download('wordnet', quiet=True)
|
| 12 |
nltk.download('punkt', quiet=True)
|
|
@@ -16,22 +15,17 @@ except:
|
|
| 16 |
|
| 17 |
class TextProcessor:
|
| 18 |
def __init__(self):
|
| 19 |
-
"""Initialize the text processor with TF-IDF vectorizer"""
|
| 20 |
self.vectorizer = TfidfVectorizer(
|
| 21 |
stop_words='english',
|
| 22 |
ngram_range=(1, 2),
|
| 23 |
max_features=10000
|
| 24 |
)
|
|
|
|
| 25 |
|
| 26 |
def preprocess_text(self, text):
|
| 27 |
-
"""Basic text preprocessing"""
|
| 28 |
-
# Convert to lower case
|
| 29 |
text = text.lower()
|
| 30 |
-
# Tokenize
|
| 31 |
tokens = word_tokenize(text)
|
| 32 |
-
# Get POS tags
|
| 33 |
pos_tags = nltk.pos_tag(tokens)
|
| 34 |
-
# Extract nouns and adjectives (medical terms are often these)
|
| 35 |
medical_terms = [word for word, tag in pos_tags if tag.startswith(('NN', 'JJ'))]
|
| 36 |
return {
|
| 37 |
'processed_text': ' '.join(tokens),
|
|
@@ -39,7 +33,6 @@ class TextProcessor:
|
|
| 39 |
}
|
| 40 |
|
| 41 |
def get_synonyms(self, term):
|
| 42 |
-
"""Get synonyms for a term using WordNet"""
|
| 43 |
synonyms = []
|
| 44 |
for syn in wordnet.synsets(term):
|
| 45 |
for lemma in syn.lemmas():
|
|
@@ -47,27 +40,19 @@ class TextProcessor:
|
|
| 47 |
return list(set(synonyms))
|
| 48 |
|
| 49 |
def calculate_relevance_scores(self, question, abstracts):
|
| 50 |
-
"""Calculate relevance scores using multiple methods"""
|
| 51 |
-
# Preprocess question
|
| 52 |
proc_question = self.preprocess_text(question)
|
| 53 |
|
| 54 |
-
# 1. TF-IDF Similarity
|
| 55 |
tfidf_matrix = self.vectorizer.fit_transform([proc_question['processed_text']] + abstracts)
|
| 56 |
tfidf_scores = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:])[0]
|
| 57 |
|
| 58 |
-
# 2. Medical Term Matching
|
| 59 |
term_scores = []
|
| 60 |
question_terms = set(proc_question['medical_terms'])
|
| 61 |
for abstract in abstracts:
|
| 62 |
abstract_terms = set(self.preprocess_text(abstract)['medical_terms'])
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
score = len(question_terms.intersection(abstract_terms)) / len(question_terms.union(abstract_terms))
|
| 66 |
-
else:
|
| 67 |
-
score = 0
|
| 68 |
term_scores.append(score)
|
| 69 |
|
| 70 |
-
# 3. Synonym Matching
|
| 71 |
synonym_scores = []
|
| 72 |
question_synonyms = set()
|
| 73 |
for term in proc_question['medical_terms']:
|
|
@@ -79,40 +64,38 @@ class TextProcessor:
|
|
| 79 |
for term in abstract_terms:
|
| 80 |
abstract_synonyms.update(self.get_synonyms(term))
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
score = len(question_synonyms.intersection(abstract_synonyms)) / len(question_synonyms.union(abstract_synonyms))
|
| 85 |
-
else:
|
| 86 |
-
score = 0
|
| 87 |
synonym_scores.append(score)
|
| 88 |
|
| 89 |
-
|
| 90 |
-
weights = {
|
| 91 |
-
'tfidf': 0.5,
|
| 92 |
-
'term_matching': 0.3,
|
| 93 |
-
'synonym_matching': 0.2
|
| 94 |
-
}
|
| 95 |
|
| 96 |
combined_scores = []
|
| 97 |
for i in range(len(abstracts)):
|
| 98 |
-
score = (
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
weights['synonym_matching'] * synonym_scores[i]
|
| 102 |
-
)
|
| 103 |
combined_scores.append(score)
|
| 104 |
|
| 105 |
return np.array(combined_scores)
|
| 106 |
|
| 107 |
def find_most_relevant_abstracts(self, question, abstracts, top_k=5):
|
| 108 |
-
"""Find the most relevant abstracts for a given question"""
|
| 109 |
-
# Calculate relevance scores
|
| 110 |
scores = self.calculate_relevance_scores(question, abstracts)
|
| 111 |
|
| 112 |
-
#
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
# Process question for medical terms
|
| 116 |
proc_question = self.preprocess_text(question)
|
| 117 |
|
| 118 |
return {
|
|
@@ -120,7 +103,7 @@ class TextProcessor:
|
|
| 120 |
'scores': scores[top_indices].tolist(),
|
| 121 |
'processed_question': {
|
| 122 |
'original': question,
|
| 123 |
-
'corrected': question,
|
| 124 |
'medical_entities': proc_question['medical_terms']
|
| 125 |
}
|
| 126 |
}
|
|
|
|
| 6 |
import nltk
|
| 7 |
import streamlit as st
|
| 8 |
|
|
|
|
| 9 |
try:
|
| 10 |
nltk.download('wordnet', quiet=True)
|
| 11 |
nltk.download('punkt', quiet=True)
|
|
|
|
| 15 |
|
| 16 |
class TextProcessor:
|
| 17 |
def __init__(self):
|
|
|
|
| 18 |
self.vectorizer = TfidfVectorizer(
|
| 19 |
stop_words='english',
|
| 20 |
ngram_range=(1, 2),
|
| 21 |
max_features=10000
|
| 22 |
)
|
| 23 |
+
self.relevance_threshold = 0.1
|
| 24 |
|
| 25 |
def preprocess_text(self, text):
|
|
|
|
|
|
|
| 26 |
text = text.lower()
|
|
|
|
| 27 |
tokens = word_tokenize(text)
|
|
|
|
| 28 |
pos_tags = nltk.pos_tag(tokens)
|
|
|
|
| 29 |
medical_terms = [word for word, tag in pos_tags if tag.startswith(('NN', 'JJ'))]
|
| 30 |
return {
|
| 31 |
'processed_text': ' '.join(tokens),
|
|
|
|
| 33 |
}
|
| 34 |
|
| 35 |
def get_synonyms(self, term):
|
|
|
|
| 36 |
synonyms = []
|
| 37 |
for syn in wordnet.synsets(term):
|
| 38 |
for lemma in syn.lemmas():
|
|
|
|
| 40 |
return list(set(synonyms))
|
| 41 |
|
| 42 |
def calculate_relevance_scores(self, question, abstracts):
|
|
|
|
|
|
|
| 43 |
proc_question = self.preprocess_text(question)
|
| 44 |
|
|
|
|
| 45 |
tfidf_matrix = self.vectorizer.fit_transform([proc_question['processed_text']] + abstracts)
|
| 46 |
tfidf_scores = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:])[0]
|
| 47 |
|
|
|
|
| 48 |
term_scores = []
|
| 49 |
question_terms = set(proc_question['medical_terms'])
|
| 50 |
for abstract in abstracts:
|
| 51 |
abstract_terms = set(self.preprocess_text(abstract)['medical_terms'])
|
| 52 |
+
score = (len(question_terms.intersection(abstract_terms)) /
|
| 53 |
+
len(question_terms.union(abstract_terms))) if question_terms.union(abstract_terms) else 0
|
|
|
|
|
|
|
|
|
|
| 54 |
term_scores.append(score)
|
| 55 |
|
|
|
|
| 56 |
synonym_scores = []
|
| 57 |
question_synonyms = set()
|
| 58 |
for term in proc_question['medical_terms']:
|
|
|
|
| 64 |
for term in abstract_terms:
|
| 65 |
abstract_synonyms.update(self.get_synonyms(term))
|
| 66 |
|
| 67 |
+
score = (len(question_synonyms.intersection(abstract_synonyms)) /
|
| 68 |
+
len(question_synonyms.union(abstract_synonyms))) if question_synonyms.union(abstract_synonyms) else 0
|
|
|
|
|
|
|
|
|
|
| 69 |
synonym_scores.append(score)
|
| 70 |
|
| 71 |
+
weights = {'tfidf': 0.5, 'term_matching': 0.3, 'synonym_matching': 0.2}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
combined_scores = []
|
| 74 |
for i in range(len(abstracts)):
|
| 75 |
+
score = (weights['tfidf'] * tfidf_scores[i] +
|
| 76 |
+
weights['term_matching'] * term_scores[i] +
|
| 77 |
+
weights['synonym_matching'] * synonym_scores[i])
|
|
|
|
|
|
|
| 78 |
combined_scores.append(score)
|
| 79 |
|
| 80 |
return np.array(combined_scores)
|
| 81 |
|
| 82 |
def find_most_relevant_abstracts(self, question, abstracts, top_k=5):
|
|
|
|
|
|
|
| 83 |
scores = self.calculate_relevance_scores(question, abstracts)
|
| 84 |
|
| 85 |
+
# Filter by relevance threshold
|
| 86 |
+
relevant_indices = np.where(scores > self.relevance_threshold)[0]
|
| 87 |
+
|
| 88 |
+
if len(relevant_indices) == 0:
|
| 89 |
+
return {
|
| 90 |
+
'top_indices': [],
|
| 91 |
+
'scores': [],
|
| 92 |
+
'processed_question': None
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
# Get top_k from relevant papers only
|
| 96 |
+
top_k = min(top_k, len(relevant_indices))
|
| 97 |
+
top_indices = relevant_indices[np.argsort(scores[relevant_indices])[-top_k:][::-1]]
|
| 98 |
|
|
|
|
| 99 |
proc_question = self.preprocess_text(question)
|
| 100 |
|
| 101 |
return {
|
|
|
|
| 103 |
'scores': scores[top_indices].tolist(),
|
| 104 |
'processed_question': {
|
| 105 |
'original': question,
|
| 106 |
+
'corrected': question,
|
| 107 |
'medical_entities': proc_question['medical_terms']
|
| 108 |
}
|
| 109 |
}
|