Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -82,6 +82,34 @@ def cleanup_model(model, tokenizer):
|
|
| 82 |
except Exception:
|
| 83 |
pass
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
@st.cache_data
|
| 86 |
def process_excel(uploaded_file):
|
| 87 |
"""Process uploaded Excel file"""
|
|
@@ -95,6 +123,25 @@ def process_excel(uploaded_file):
|
|
| 95 |
if missing_columns:
|
| 96 |
st.error(f"Missing required columns: {', '.join(missing_columns)}")
|
| 97 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
return df[required_columns]
|
| 100 |
except Exception as e:
|
|
@@ -318,10 +365,24 @@ def create_filter_controls(df, sort_column):
|
|
| 318 |
|
| 319 |
def main():
|
| 320 |
st.title("🔬 Biomedical Papers Analysis")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
|
| 322 |
# File upload section
|
| 323 |
uploaded_file = st.file_uploader(
|
| 324 |
-
"Upload Excel file containing papers",
|
| 325 |
type=['xlsx', 'xls'],
|
| 326 |
help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
|
| 327 |
)
|
|
@@ -331,12 +392,17 @@ def main():
|
|
| 331 |
question = ""
|
| 332 |
|
| 333 |
if uploaded_file is not None:
|
| 334 |
-
|
| 335 |
if st.session_state.processed_data is None:
|
| 336 |
with st.spinner("Processing file..."):
|
| 337 |
df = process_excel(uploaded_file)
|
| 338 |
if df is not None:
|
| 339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
|
| 341 |
if st.session_state.processed_data is not None:
|
| 342 |
df = st.session_state.processed_data
|
|
|
|
| 82 |
except Exception:
|
| 83 |
pass
|
| 84 |
|
| 85 |
+
def validate_excel_structure(df):
|
| 86 |
+
"""Validate the structure and content of the Excel file"""
|
| 87 |
+
validation_messages = []
|
| 88 |
+
|
| 89 |
+
# Check for minimum content
|
| 90 |
+
if len(df) == 0:
|
| 91 |
+
validation_messages.append("File contains no data")
|
| 92 |
+
return False, validation_messages
|
| 93 |
+
|
| 94 |
+
# Check abstract length
|
| 95 |
+
if df['Abstract'].str.len().min() < 50:
|
| 96 |
+
validation_messages.append("Some abstracts are too short (less than 50 characters)")
|
| 97 |
+
|
| 98 |
+
# Check publication year format
|
| 99 |
+
try:
|
| 100 |
+
df['Publication Year'] = df['Publication Year'].astype(int)
|
| 101 |
+
if df['Publication Year'].min() < 1900 or df['Publication Year'].max() > 2025:
|
| 102 |
+
validation_messages.append("Invalid publication years detected")
|
| 103 |
+
except:
|
| 104 |
+
validation_messages.append("Invalid format in Publication Year column")
|
| 105 |
+
|
| 106 |
+
# Check if DOIs are in valid format (basic check)
|
| 107 |
+
if not df['DOI'].str.contains(r'10\.\d{4,}/.+', na=True).all():
|
| 108 |
+
validation_messages.append("Some DOIs are in invalid format")
|
| 109 |
+
|
| 110 |
+
return len(validation_messages) == 0, validation_messages
|
| 111 |
+
|
| 112 |
+
|
| 113 |
@st.cache_data
|
| 114 |
def process_excel(uploaded_file):
|
| 115 |
"""Process uploaded Excel file"""
|
|
|
|
| 123 |
if missing_columns:
|
| 124 |
st.error(f"Missing required columns: {', '.join(missing_columns)}")
|
| 125 |
return None
|
| 126 |
+
|
| 127 |
+
# Check number of papers
|
| 128 |
+
if len(df) > 5:
|
| 129 |
+
st.error("❌ Your file contains more than 5 papers. Please upload a file with maximum 5 papers.")
|
| 130 |
+
return None
|
| 131 |
+
|
| 132 |
+
# Validate structure and content
|
| 133 |
+
is_valid, messages = validate_excel_structure(df)
|
| 134 |
+
if not is_valid:
|
| 135 |
+
for msg in messages:
|
| 136 |
+
st.error(f"❌ {msg}")
|
| 137 |
+
return None
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
# Check for empty required fields
|
| 141 |
+
for col in required_columns:
|
| 142 |
+
if df[col].isna().any():
|
| 143 |
+
st.warning(f"⚠️ Some entries in '{col}' column are empty. This might affect the analysis.")
|
| 144 |
+
|
| 145 |
|
| 146 |
return df[required_columns]
|
| 147 |
except Exception as e:
|
|
|
|
| 365 |
|
| 366 |
def main():
|
| 367 |
st.title("🔬 Biomedical Papers Analysis")
|
| 368 |
+
|
| 369 |
+
st.info("""
|
| 370 |
+
**📋 File Upload Requirements:**
|
| 371 |
+
- Excel file (.xlsx or .xls) with **maximum 5 papers**
|
| 372 |
+
- Must contain these columns:
|
| 373 |
+
• Abstract
|
| 374 |
+
• Article Title
|
| 375 |
+
• Authors
|
| 376 |
+
• Source Title
|
| 377 |
+
• Publication Year
|
| 378 |
+
• DOI
|
| 379 |
+
• Times Cited, All Databases
|
| 380 |
+
""")
|
| 381 |
+
|
| 382 |
|
| 383 |
# File upload section
|
| 384 |
uploaded_file = st.file_uploader(
|
| 385 |
+
"Upload Excel file containing papers (max 5 papers)",
|
| 386 |
type=['xlsx', 'xls'],
|
| 387 |
help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
|
| 388 |
)
|
|
|
|
| 392 |
question = ""
|
| 393 |
|
| 394 |
if uploaded_file is not None:
|
| 395 |
+
# Process Excel file
|
| 396 |
if st.session_state.processed_data is None:
|
| 397 |
with st.spinner("Processing file..."):
|
| 398 |
df = process_excel(uploaded_file)
|
| 399 |
if df is not None:
|
| 400 |
+
df = df.dropna(subset=["Abstract"])
|
| 401 |
+
if len(df) > 0:
|
| 402 |
+
st.session_state.processed_data = df
|
| 403 |
+
st.success(f"✅ Successfully loaded {len(df)} papers with abstracts")
|
| 404 |
+
else:
|
| 405 |
+
st.error("❌ No valid papers found after processing. Please check your file.")
|
| 406 |
|
| 407 |
if st.session_state.processed_data is not None:
|
| 408 |
df = st.session_state.processed_data
|