Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -38,15 +38,15 @@ def load_model(model_type):
|
|
| 38 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 39 |
"facebook/bart-large-cnn",
|
| 40 |
cache_dir="./models",
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
model = PeftModel.from_pretrained(
|
| 45 |
base_model,
|
| 46 |
"pendar02/results",
|
| 47 |
-
|
| 48 |
-
torch_dtype=torch.float32
|
| 49 |
).to(device)
|
|
|
|
| 50 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 51 |
"facebook/bart-large-cnn",
|
| 52 |
cache_dir="./models"
|
|
@@ -55,15 +55,15 @@ def load_model(model_type):
|
|
| 55 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 56 |
"GanjinZero/biobart-base",
|
| 57 |
cache_dir="./models",
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
model = PeftModel.from_pretrained(
|
| 62 |
base_model,
|
| 63 |
"pendar02/biobart-finetune",
|
| 64 |
-
|
| 65 |
-
torch_dtype=torch.float32
|
| 66 |
).to(device)
|
|
|
|
| 67 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 68 |
"GanjinZero/biobart-base",
|
| 69 |
cache_dir="./models"
|
|
@@ -74,6 +74,12 @@ def load_model(model_type):
|
|
| 74 |
except Exception as e:
|
| 75 |
st.error(f"Error loading model: {str(e)}")
|
| 76 |
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
def cleanup_model(model, tokenizer):
|
| 79 |
"""Properly cleanup model resources"""
|
|
|
|
| 38 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 39 |
"facebook/bart-large-cnn",
|
| 40 |
cache_dir="./models",
|
| 41 |
+
torch_dtype=torch.float32
|
| 42 |
+
).to(device)
|
| 43 |
+
|
| 44 |
model = PeftModel.from_pretrained(
|
| 45 |
base_model,
|
| 46 |
"pendar02/results",
|
| 47 |
+
is_trainable=False
|
|
|
|
| 48 |
).to(device)
|
| 49 |
+
|
| 50 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 51 |
"facebook/bart-large-cnn",
|
| 52 |
cache_dir="./models"
|
|
|
|
| 55 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 56 |
"GanjinZero/biobart-base",
|
| 57 |
cache_dir="./models",
|
| 58 |
+
torch_dtype=torch.float32
|
| 59 |
+
).to(device)
|
| 60 |
+
|
| 61 |
model = PeftModel.from_pretrained(
|
| 62 |
base_model,
|
| 63 |
"pendar02/biobart-finetune",
|
| 64 |
+
is_trainable=False
|
|
|
|
| 65 |
).to(device)
|
| 66 |
+
|
| 67 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 68 |
"GanjinZero/biobart-base",
|
| 69 |
cache_dir="./models"
|
|
|
|
| 74 |
except Exception as e:
|
| 75 |
st.error(f"Error loading model: {str(e)}")
|
| 76 |
raise
|
| 77 |
+
|
| 78 |
+
model.eval()
|
| 79 |
+
return model, tokenizer
|
| 80 |
+
except Exception as e:
|
| 81 |
+
st.error(f"Error loading model: {str(e)}")
|
| 82 |
+
raise
|
| 83 |
|
| 84 |
def cleanup_model(model, tokenizer):
|
| 85 |
"""Properly cleanup model resources"""
|