Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -40,43 +40,48 @@ def load_model(model_type):
|
|
| 40 |
manage_resources()
|
| 41 |
|
| 42 |
try:
|
| 43 |
-
# For CPU-only environment, don't use device_map
|
| 44 |
if model_type == "summarize":
|
| 45 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 46 |
"facebook/bart-large-cnn",
|
| 47 |
cache_dir="./models",
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
)
|
|
|
|
| 51 |
model = PeftModel.from_pretrained(
|
| 52 |
base_model,
|
| 53 |
"pendar02/results",
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
| 56 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 57 |
"facebook/bart-large-cnn",
|
| 58 |
cache_dir="./models"
|
| 59 |
)
|
| 60 |
else: # question_focused
|
| 61 |
-
base_model =
|
| 62 |
"GanjinZero/biobart-base",
|
| 63 |
cache_dir="./models",
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
)
|
|
|
|
| 67 |
model = PeftModel.from_pretrained(
|
| 68 |
base_model,
|
| 69 |
"pendar02/biobart-finetune",
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
| 72 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 73 |
"GanjinZero/biobart-base",
|
| 74 |
cache_dir="./models"
|
| 75 |
)
|
| 76 |
|
| 77 |
-
#
|
| 78 |
-
model = model.cpu()
|
| 79 |
-
model.eval()
|
| 80 |
return model, tokenizer
|
| 81 |
except Exception as e:
|
| 82 |
st.error(f"Error loading model: {str(e)}")
|
|
|
|
| 40 |
manage_resources()
|
| 41 |
|
| 42 |
try:
|
|
|
|
| 43 |
if model_type == "summarize":
|
| 44 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 45 |
"facebook/bart-large-cnn",
|
| 46 |
cache_dir="./models",
|
| 47 |
+
device_map=None, # Explicitly set to None for CPU
|
| 48 |
+
torch_dtype=torch.float32
|
| 49 |
+
).to("cpu") # Force CPU
|
| 50 |
+
|
| 51 |
model = PeftModel.from_pretrained(
|
| 52 |
base_model,
|
| 53 |
"pendar02/results",
|
| 54 |
+
device_map=None, # Explicitly set to None for CPU
|
| 55 |
+
torch_dtype=torch.float32,
|
| 56 |
+
is_trainable=False # Set to inference mode
|
| 57 |
+
).to("cpu") # Force CPU
|
| 58 |
+
|
| 59 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 60 |
"facebook/bart-large-cnn",
|
| 61 |
cache_dir="./models"
|
| 62 |
)
|
| 63 |
else: # question_focused
|
| 64 |
+
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 65 |
"GanjinZero/biobart-base",
|
| 66 |
cache_dir="./models",
|
| 67 |
+
device_map=None, # Explicitly set to None for CPU
|
| 68 |
+
torch_dtype=torch.float32
|
| 69 |
+
).to("cpu") # Force CPU
|
| 70 |
+
|
| 71 |
model = PeftModel.from_pretrained(
|
| 72 |
base_model,
|
| 73 |
"pendar02/biobart-finetune",
|
| 74 |
+
device_map=None, # Explicitly set to None for CPU
|
| 75 |
+
torch_dtype=torch.float32,
|
| 76 |
+
is_trainable=False # Set to inference mode
|
| 77 |
+
).to("cpu") # Force CPU
|
| 78 |
+
|
| 79 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 80 |
"GanjinZero/biobart-base",
|
| 81 |
cache_dir="./models"
|
| 82 |
)
|
| 83 |
|
| 84 |
+
model.eval() # Set to evaluation mode
|
|
|
|
|
|
|
| 85 |
return model, tokenizer
|
| 86 |
except Exception as e:
|
| 87 |
st.error(f"Error loading model: {str(e)}")
|