import os import random import uuid import json import time import asyncio from threading import Thread from typing import Iterable import gradio as gr import spaces import torch import numpy as np from PIL import Image # cv2 is no longer needed as video processing is removed from transformers import ( Qwen2VLForConditionalGeneration, Qwen2_5_VLForConditionalGeneration, AutoModelForImageTextToText, AutoProcessor, TextIteratorStreamer, ) from transformers.image_utils import load_image from gradio.themes import Soft from gradio.themes.utils import colors, fonts, sizes # --- Theme and CSS Definition --- # Define the new SpringGreen color palette colors.spring_green = colors.Color( name="spring_green", c50="#E5FFF2", c100="#CCFFEC", c200="#99FFD9", c300="#66FFC6", c400="#33FFB3", c500="#00FF7F", # SpringGreen base color c600="#00E672", c700="#00CC66", c800="#00B359", c900="#00994D", c950="#008040", ) class SpringGreenTheme(Soft): def __init__( self, *, primary_hue: colors.Color | str = colors.gray, secondary_hue: colors.Color | str = colors.spring_green, # Use the new color neutral_hue: colors.Color | str = colors.slate, text_size: sizes.Size | str = sizes.text_lg, font: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Outfit"), "Arial", "sans-serif", ), font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", ), ): super().__init__( primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue, text_size=text_size, font=font, font_mono=font_mono, ) super().set( background_fill_primary="*primary_50", background_fill_primary_dark="*primary_900", body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", button_primary_text_color="black", button_primary_text_color_hover="white", button_primary_background_fill="linear-gradient(90deg, *secondary_400, *secondary_500)", button_primary_background_fill_hover="linear-gradient(90deg, *secondary_500, *secondary_600)", button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)", slider_color="*secondary_400", slider_color_dark="*secondary_600", block_title_text_weight="600", block_border_width="3px", block_shadow="*shadow_drop_lg", button_primary_shadow="*shadow_drop_lg", button_large_padding="11px", color_accent_soft="*primary_100", block_label_background_fill="*primary_200", ) # Instantiate the new theme spring_green_theme = SpringGreenTheme() css = """ #main-title h1 { font-size: 2.3em !important; } #output-title h2 { font-size: 2.1em !important; } """ # Constants for text generation MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 # Increased max_length to accommodate more complex inputs MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) print("torch.__version__ =", torch.__version__) print("torch.version.cuda =", torch.version.cuda) print("cuda available:", torch.cuda.is_available()) print("cuda device count:", torch.cuda.device_count()) if torch.cuda.is_available(): print("current device:", torch.cuda.current_device()) print("device name:", torch.cuda.get_device_name(torch.cuda.current_device())) print("Using device:", device) # --- Model Loading --- # Load Nanonets-OCR2-3B MODEL_ID_V = "nanonets/Nanonets-OCR2-3B" processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True) model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_ID_V, trust_remote_code=True, torch_dtype=torch.float16 ).to(device).eval() # Load Qwen2-VL-OCR-2B-Instruct MODEL_ID_X = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True) model_x = Qwen2VLForConditionalGeneration.from_pretrained( MODEL_ID_X, trust_remote_code=True, torch_dtype=torch.float16 ).to(device).eval() # Load Aya-Vision-8b MODEL_ID_A = "CohereForAI/aya-vision-8b" processor_a = AutoProcessor.from_pretrained(MODEL_ID_A, trust_remote_code=True) model_a = AutoModelForImageTextToText.from_pretrained( MODEL_ID_A, trust_remote_code=True, torch_dtype=torch.float16 ).to(device).eval() # Load olmOCR-7B-0725 MODEL_ID_W = "allenai/olmOCR-7B-0725" processor_w = AutoProcessor.from_pretrained(MODEL_ID_W, trust_remote_code=True) model_w = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_ID_W, trust_remote_code=True, torch_dtype=torch.float16 ).to(device).eval() # Load RolmOCR MODEL_ID_M = "reducto/RolmOCR" processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16 ).to(device).eval() @spaces.GPU def generate_image(model_name: str, text: str, image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): """ Generates responses using the selected model for image input. Yields raw text and Markdown-formatted text. """ if model_name == "RolmOCR-7B": processor = processor_m model = model_m elif model_name == "Qwen2-VL-OCR-2B": processor = processor_x model = model_x elif model_name == "Nanonets-OCR2-3B": processor = processor_v model = model_v elif model_name == "Aya-Vision-8B": processor = processor_a model = model_a elif model_name == "olmOCR-7B-0725": processor = processor_w model = model_w else: yield "Invalid model selected.", "Invalid model selected." return if image is None: yield "Please upload an image.", "Please upload an image." return messages = [{ "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": text}, ] }] prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # FIX: Set truncation to False and rely on the model's context length. # The increased MAX_INPUT_TOKEN_LENGTH at the top also helps. inputs = processor( text=[prompt_full], images=[image], return_tensors="pt", padding=True ).to(device) streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text buffer = buffer.replace("<|im_end|>", "") time.sleep(0.01) yield buffer, buffer # Define examples for image inference image_examples = [ ["Extract the full page.", "images/ocr.png"], ["Extract the content.", "images/4.png"], ["Convert this page to doc [table] precisely for markdown.", "images/0.png"] ] # Create the Gradio Interface with gr.Blocks(css=css, theme=spring_green_theme) as demo: gr.Markdown("# **Multimodal OCR**", elem_id="main-title") with gr.Row(): with gr.Column(scale=2): image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") image_upload = gr.Image(type="pil", label="Upload Image", height=290) image_submit = gr.Button("Submit", variant="primary") gr.Examples( examples=image_examples, inputs=[image_query, image_upload] ) with gr.Accordion("Advanced options", open=False): max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) with gr.Column(scale=3): gr.Markdown("## Output", elem_id="output-title") output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True) with gr.Accordion("(Result.md)", open=False): markdown_output = gr.Markdown(label="(Result.Md)") model_choice = gr.Radio( choices=["Nanonets-OCR2-3B", "olmOCR-7B-0725", "RolmOCR-7B", "Aya-Vision-8B", "Qwen2-VL-OCR-2B"], label="Select Model", value="Nanonets-OCR2-3B" ) image_submit.click( fn=generate_image, inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[output, markdown_output] ) if __name__ == "__main__": demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)