import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig import torch MODEL_NAME = "rahul-shrivastav/BTP-model" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype=torch.float16, device_map="auto" ) def generate_response(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) generation_config = GenerationConfig( do_sample=True, top_k=50, temperature=0.7, max_new_tokens=200, pad_token_id=tokenizer.eos_token_id ) outputs = model.generate(**inputs, generation_config=generation_config) text = tokenizer.decode(outputs[0], skip_special_tokens=True) return {"response": text} # API mode only — no UI demo = gr.Interface( fn=generate_response, inputs=gr.Textbox(), outputs="json", allow_flagging="never" ) if __name__ == "__main__": demo.launch( server_name="0.0.0.0", # Needed for Spaces to accept incoming requests server_port=7860 # enable_api=True, # allows /gradio_api calls # allow_flagging="never", # no flag button in UI # share=True # optional, for public link )