Spaces:
Runtime error
Runtime error
Upload 8 files
Browse files- README.md +3 -3
- app.py +304 -0
- config.py +79 -0
- extract_clamp3.py +189 -0
- features.zip +3 -0
- requirements.txt +72 -0
- utils.py +574 -0
- wikimt-x-public.jsonl +0 -0
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
title: Clamp3
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.16.0
|
| 8 |
app_file: app.py
|
|
|
|
| 1 |
---
|
| 2 |
title: Clamp3
|
| 3 |
+
emoji: 🗜️
|
| 4 |
+
colorFrom: pink
|
| 5 |
+
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.16.0
|
| 8 |
app_file: app.py
|
app.py
ADDED
|
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import zipfile
|
| 6 |
+
import json
|
| 7 |
+
import requests
|
| 8 |
+
import subprocess
|
| 9 |
+
import shutil
|
| 10 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 11 |
+
|
| 12 |
+
title = "# 🗜️ CLaMP 3 - Multimodal & Multilingual Semantic Music Search"
|
| 13 |
+
|
| 14 |
+
badges = """
|
| 15 |
+
<div style="text-align: center;">
|
| 16 |
+
<a href="#"><img src="https://img.shields.io/badge/CLaMP%203%20Homepage-Coming%20Soon-lightgrey?style=for-the-badge&logo=home-assistant" alt="Homepage"></a>
|
| 17 |
+
<a href="#"><img src="https://img.shields.io/badge/CLaMP%203%20Paper-Coming%20Soon-lightgrey?style=for-the-badge&logo=arxiv" alt="Paper"></a>
|
| 18 |
+
<a href="https://github.com/sanderwood/clamp3"><img src="https://img.shields.io/badge/CLaMP%203%20Code-GitHub-181717?style=for-the-badge&logo=github" alt="GitHub"></a>
|
| 19 |
+
<a href="https://huggingface.co/sander-wood/clamp3/tree/main"><img src="https://img.shields.io/badge/Model%20Weights-Hugging%20Face-ffcc00?style=for-the-badge&logo=huggingface" alt="Model Weights"></a>
|
| 20 |
+
<a href="https://huggingface.co/datasets/sander-wood/m4-rag"><img src="https://img.shields.io/badge/M4--RAG%20Pretraining%20Dataset-Hugging%20Face-ffcc00?style=for-the-badge&logo=huggingface" alt="Dataset"></a>
|
| 21 |
+
<a href="https://huggingface.co/datasets/sander-wood/wikimt-x"><img src="https://img.shields.io/badge/WikiMT--X%20Evaluation%20Benchmark-Hugging%20Face-ffcc00?style=for-the-badge&logo=huggingface" alt="Benchmark"></a>
|
| 22 |
+
</div>
|
| 23 |
+
<style>
|
| 24 |
+
div a {
|
| 25 |
+
display: inline-block;
|
| 26 |
+
margin: 5px;
|
| 27 |
+
}
|
| 28 |
+
div a img {
|
| 29 |
+
height: 30px;
|
| 30 |
+
}
|
| 31 |
+
</style>
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
description = """CLaMP 3 is a **multimodal and multilingual** music information retrieval (MIR) framework, supporting **sheet music, audio, and performance signals** in over **100 languages**. Using **contrastive learning**, it aligns these modalities in a shared space for **cross-modal retrieval**.
|
| 35 |
+
|
| 36 |
+
### 🔍 **How This Demo Works**
|
| 37 |
+
- You can **retrieve music using any text input (in any language) or an image** (`.png`, `.jpg`).
|
| 38 |
+
- When using an image, **BLIP** generates a caption, which is then used for retrieval.
|
| 39 |
+
- Since CLaMP 3's training data includes **rich visual descriptions of musical scenes**, it can **match images to semantically relevant music**.
|
| 40 |
+
|
| 41 |
+
### ⚠️ **Limitations**
|
| 42 |
+
- This demo retrieves music **only from the WikiMT-X benchmark (1,000 pieces)**.
|
| 43 |
+
- These pieces are **mainly from the U.S. and Western Europe (especially the U.S.)** and **mostly from the 20th century**.
|
| 44 |
+
- The retrieval results are **mostly limited to Western 20th-century music**, so you **won’t** find music from **other regions or historical periods**.
|
| 45 |
+
- If you need retrieval for a **different music collection**, deploy **CLaMP 3 on your own dataset**.
|
| 46 |
+
|
| 47 |
+
This demo is for **research purposes only**."""
|
| 48 |
+
|
| 49 |
+
# Load BLIP image captioning model and processor
|
| 50 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 51 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 52 |
+
|
| 53 |
+
# Download weight file if it does not exist
|
| 54 |
+
weights_url = "https://huggingface.co/sander-wood/clamp3/resolve/main/weights_clamp3_saas_h_size_768_t_model_FacebookAI_xlm-roberta-base_t_length_128_a_size_768_a_layers_12_a_length_128_s_size_768_s_layers_12_p_size_64_p_length_512.pth"
|
| 55 |
+
weights_filename = "weights_clamp3_saas_h_size_768_t_model_FacebookAI_xlm-roberta-base_t_length_128_a_size_768_a_layers_12_a_length_128_s_size_768_s_layers_12_p_size_64_p_length_512.pth"
|
| 56 |
+
|
| 57 |
+
if not os.path.exists(weights_filename):
|
| 58 |
+
print("Downloading weights file...")
|
| 59 |
+
response = requests.get(weights_url, stream=True)
|
| 60 |
+
response.raise_for_status()
|
| 61 |
+
with open(weights_filename, "wb") as f:
|
| 62 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 63 |
+
if chunk:
|
| 64 |
+
f.write(chunk)
|
| 65 |
+
print("Weights file downloaded.")
|
| 66 |
+
|
| 67 |
+
ZIP_PATH = "features.zip"
|
| 68 |
+
if os.path.exists(ZIP_PATH):
|
| 69 |
+
print(f"Extracting {ZIP_PATH}...")
|
| 70 |
+
with zipfile.ZipFile(ZIP_PATH, "r") as zip_ref:
|
| 71 |
+
zip_ref.extractall(".")
|
| 72 |
+
print("Extraction complete.")
|
| 73 |
+
|
| 74 |
+
# Load metadata
|
| 75 |
+
metadata_map = {}
|
| 76 |
+
METADATA_FILE = "wikimt-x-public.jsonl"
|
| 77 |
+
if os.path.exists(METADATA_FILE):
|
| 78 |
+
with open(METADATA_FILE, "r", encoding="utf-8") as f:
|
| 79 |
+
for line in f:
|
| 80 |
+
data = json.loads(line)
|
| 81 |
+
metadata_map[data["id"]] = data
|
| 82 |
+
else:
|
| 83 |
+
print(f"Warning: {METADATA_FILE} not found.")
|
| 84 |
+
|
| 85 |
+
features_cache = {}
|
| 86 |
+
|
| 87 |
+
def get_info(folder_path):
|
| 88 |
+
"""
|
| 89 |
+
Load all .npy files from the specified folder and return a dictionary
|
| 90 |
+
with the file names (without extension) as keys.
|
| 91 |
+
"""
|
| 92 |
+
if folder_path in features_cache:
|
| 93 |
+
return features_cache[folder_path]
|
| 94 |
+
if not os.path.exists(folder_path):
|
| 95 |
+
return {}
|
| 96 |
+
files = sorted(os.listdir(folder_path))
|
| 97 |
+
features = {}
|
| 98 |
+
for file in files:
|
| 99 |
+
if file.endswith(".npy"):
|
| 100 |
+
key = file.split(".")[0]
|
| 101 |
+
try:
|
| 102 |
+
features[key] = np.load(os.path.join(folder_path, file))[0]
|
| 103 |
+
except Exception as e:
|
| 104 |
+
print(f"Error loading {file}: {e}")
|
| 105 |
+
features_cache[folder_path] = features
|
| 106 |
+
return features
|
| 107 |
+
|
| 108 |
+
def find_top_similar(query_file, reference_folder):
|
| 109 |
+
"""
|
| 110 |
+
Compare the query feature with all reference features in the specified folder
|
| 111 |
+
using cosine similarity and return the top 10 candidate results in the format:
|
| 112 |
+
Title | Artists | sim: SimilarityScore.
|
| 113 |
+
"""
|
| 114 |
+
top_k = 10
|
| 115 |
+
try:
|
| 116 |
+
query_feature = np.load(query_file.name)[0]
|
| 117 |
+
except Exception as e:
|
| 118 |
+
return [], f"Error loading query feature: {e}"
|
| 119 |
+
query_tensor = torch.tensor(query_feature, dtype=torch.float32).unsqueeze(dim=0)
|
| 120 |
+
key_features = get_info(reference_folder)
|
| 121 |
+
if not key_features:
|
| 122 |
+
return [], f"No reference features found in {reference_folder}."
|
| 123 |
+
ref_keys = list(key_features.keys())
|
| 124 |
+
ref_array = np.array([key_features[k] for k in ref_keys])
|
| 125 |
+
key_feats_tensor = torch.tensor(ref_array, dtype=torch.float32)
|
| 126 |
+
query_tensor_expanded = query_tensor.expand(key_feats_tensor.size(0), -1)
|
| 127 |
+
similarities = torch.cosine_similarity(query_tensor_expanded, key_feats_tensor, dim=1)
|
| 128 |
+
ranked_indices = torch.argsort(similarities, descending=True)
|
| 129 |
+
candidate_ids = []
|
| 130 |
+
candidate_display = []
|
| 131 |
+
for i in range(top_k):
|
| 132 |
+
if i < len(ref_keys):
|
| 133 |
+
candidate_idx = ranked_indices[i].item()
|
| 134 |
+
candidate_id = ref_keys[candidate_idx]
|
| 135 |
+
sim = round(similarities[candidate_idx].item(), 4)
|
| 136 |
+
meta = metadata_map.get(candidate_id, {})
|
| 137 |
+
title = meta.get("title", candidate_id)
|
| 138 |
+
artists = meta.get("artists", "Unknown")
|
| 139 |
+
if isinstance(artists, list):
|
| 140 |
+
artists = ", ".join(artists)
|
| 141 |
+
candidate_ids.append(candidate_id)
|
| 142 |
+
candidate_display.append(f"{title} | {artists} | sim: {sim}")
|
| 143 |
+
else:
|
| 144 |
+
candidate_ids.append("N/A")
|
| 145 |
+
candidate_display.append("N/A")
|
| 146 |
+
return candidate_ids, candidate_display
|
| 147 |
+
|
| 148 |
+
def show_details(selected_id):
|
| 149 |
+
"""
|
| 150 |
+
Return detailed metadata and embedded YouTube video HTML based on the candidate ID.
|
| 151 |
+
"""
|
| 152 |
+
if selected_id == "N/A":
|
| 153 |
+
return ("", "", "", "", "", "", "", "")
|
| 154 |
+
data = metadata_map.get(selected_id, {})
|
| 155 |
+
if not data:
|
| 156 |
+
return ("No details found", "", "", "", "", "", "", "")
|
| 157 |
+
title = data.get("title", "")
|
| 158 |
+
artists = data.get("artists", "")
|
| 159 |
+
if isinstance(artists, list):
|
| 160 |
+
artists = ", ".join(artists)
|
| 161 |
+
genre = data.get("genre", "")
|
| 162 |
+
background = data.get("background", "")
|
| 163 |
+
analysis = data.get("analysis", "")
|
| 164 |
+
description = data.get("description", "")
|
| 165 |
+
scene = data.get("scene", "")
|
| 166 |
+
youtube_html = (
|
| 167 |
+
f'<iframe width="560" height="315" src="https://www.youtube.com/embed/{selected_id}" '
|
| 168 |
+
f'frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; '
|
| 169 |
+
f'gyroscope; picture-in-picture" allowfullscreen></iframe>'
|
| 170 |
+
)
|
| 171 |
+
return title, artists, genre, background, analysis, description, scene, youtube_html
|
| 172 |
+
|
| 173 |
+
def extract_features_from_text(text):
|
| 174 |
+
"""
|
| 175 |
+
Save the input text to a file, call the CLaMP 3 feature extraction script,
|
| 176 |
+
and return the generated feature file path.
|
| 177 |
+
"""
|
| 178 |
+
input_dir = "input_dir"
|
| 179 |
+
output_dir = "output_dir"
|
| 180 |
+
os.makedirs(input_dir, exist_ok=True)
|
| 181 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 182 |
+
# Clear input_dir and output_dir
|
| 183 |
+
for d in [input_dir, output_dir]:
|
| 184 |
+
for filename in os.listdir(d):
|
| 185 |
+
file_path = os.path.join(d, filename)
|
| 186 |
+
if os.path.isfile(file_path) or os.path.islink(file_path):
|
| 187 |
+
os.unlink(file_path)
|
| 188 |
+
elif os.path.isdir(file_path):
|
| 189 |
+
shutil.rmtree(file_path)
|
| 190 |
+
input_file = os.path.join(input_dir, "input.txt")
|
| 191 |
+
print("Text input:", text)
|
| 192 |
+
with open(input_file, "w", encoding="utf-8") as f:
|
| 193 |
+
f.write(text)
|
| 194 |
+
command = ["python", "extract_clamp3.py", input_dir, output_dir, "--get_global"]
|
| 195 |
+
subprocess.run(command, check=True)
|
| 196 |
+
output_file = os.path.join(output_dir, "input.npy")
|
| 197 |
+
return output_file
|
| 198 |
+
|
| 199 |
+
def generate_caption(image):
|
| 200 |
+
"""
|
| 201 |
+
Use the BLIP model to generate a descriptive caption for the given image.
|
| 202 |
+
"""
|
| 203 |
+
inputs = processor(image, return_tensors="pt")
|
| 204 |
+
outputs = blip_model.generate(**inputs)
|
| 205 |
+
caption = processor.decode(outputs[0], skip_special_tokens=True)
|
| 206 |
+
return caption
|
| 207 |
+
|
| 208 |
+
class FileWrapper:
|
| 209 |
+
"""
|
| 210 |
+
Simulate a file object with a .name attribute.
|
| 211 |
+
"""
|
| 212 |
+
def __init__(self, path):
|
| 213 |
+
self.name = path
|
| 214 |
+
|
| 215 |
+
def search_wrapper(search_mode, text_input, image_input):
|
| 216 |
+
"""
|
| 217 |
+
Perform retrieval based on the selected input mode:
|
| 218 |
+
- If search_mode is "Image", use the uploaded image to generate a caption, then extract features
|
| 219 |
+
and search in the "image/" folder.
|
| 220 |
+
- If search_mode is "Text", use the provided text to extract features and search in the "image/" folder.
|
| 221 |
+
"""
|
| 222 |
+
if search_mode == "Image":
|
| 223 |
+
if image_input is None:
|
| 224 |
+
return text_input, gr.update(choices=[]), "Please upload an image.", "", "", "", "", "", "", ""
|
| 225 |
+
caption = generate_caption(image_input)
|
| 226 |
+
text_to_use = caption
|
| 227 |
+
reference_folder = "image/"
|
| 228 |
+
elif search_mode == "Text":
|
| 229 |
+
if not text_input or text_input.strip() == "":
|
| 230 |
+
return "Describe the music you're looking for (in any language)", gr.update(choices=[]), "Please enter text for retrieval.", "", "", "", "", "", "", ""
|
| 231 |
+
text_to_use = text_input
|
| 232 |
+
reference_folder = "text/"
|
| 233 |
+
else:
|
| 234 |
+
return "Describe the music you're looking for (in any language)", gr.update(choices=[]), "Invalid search mode selected.", "", "", "", "", "", "", ""
|
| 235 |
+
|
| 236 |
+
try:
|
| 237 |
+
output_file = extract_features_from_text(text_to_use)
|
| 238 |
+
query_file = FileWrapper(output_file)
|
| 239 |
+
except Exception as e:
|
| 240 |
+
return text_to_use, gr.update(choices=[]), f"Error during feature extraction: {e}", "", "", "", "", "", "", ""
|
| 241 |
+
candidate_ids, candidate_display = find_top_similar(query_file, reference_folder)
|
| 242 |
+
if not candidate_ids:
|
| 243 |
+
return text_to_use, gr.update(choices=[]), "", "", "", "", "", "", "", ""
|
| 244 |
+
choices = [(f"{i+1}. {disp}", cid) for i, (cid, disp) in enumerate(zip(candidate_ids, candidate_display))]
|
| 245 |
+
top_candidate = candidate_ids[0]
|
| 246 |
+
details = show_details(top_candidate)
|
| 247 |
+
return text_to_use, gr.update(choices=choices), *details
|
| 248 |
+
|
| 249 |
+
with gr.Blocks() as demo:
|
| 250 |
+
gr.Markdown(title)
|
| 251 |
+
gr.HTML(badges)
|
| 252 |
+
gr.Markdown(description)
|
| 253 |
+
gr.HTML(
|
| 254 |
+
"""
|
| 255 |
+
<style>
|
| 256 |
+
.vertical-radio .gradio-radio label {
|
| 257 |
+
display: block !important;
|
| 258 |
+
margin-bottom: 5px;
|
| 259 |
+
}
|
| 260 |
+
</style>
|
| 261 |
+
"""
|
| 262 |
+
)
|
| 263 |
+
with gr.Row():
|
| 264 |
+
with gr.Column():
|
| 265 |
+
search_mode = gr.Radio(
|
| 266 |
+
choices=["Text", "Image"],
|
| 267 |
+
label="Select Search Mode",
|
| 268 |
+
value="Text",
|
| 269 |
+
interactive=True,
|
| 270 |
+
elem_classes=["vertical-radio"]
|
| 271 |
+
)
|
| 272 |
+
text_input = gr.Textbox(
|
| 273 |
+
placeholder="Describe the music you're looking for (in any language)",
|
| 274 |
+
lines=4
|
| 275 |
+
)
|
| 276 |
+
image_input = gr.Image(
|
| 277 |
+
label="Or upload an image (PNG, JPG)",
|
| 278 |
+
type="pil"
|
| 279 |
+
)
|
| 280 |
+
search_button = gr.Button("Search")
|
| 281 |
+
candidate_radio = gr.Radio(choices=[], label="Select Retrieval Result", interactive=True, elem_classes=["vertical-radio"])
|
| 282 |
+
with gr.Column():
|
| 283 |
+
gr.Markdown("### YouTube Video")
|
| 284 |
+
youtube_box = gr.HTML(label="YouTube Video")
|
| 285 |
+
gr.Markdown("### Metadata")
|
| 286 |
+
title_box = gr.Textbox(label="Title", interactive=False)
|
| 287 |
+
artists_box = gr.Textbox(label="Artists", interactive=False)
|
| 288 |
+
genre_box = gr.Textbox(label="Genre", interactive=False)
|
| 289 |
+
background_box = gr.Textbox(label="Background", interactive=False)
|
| 290 |
+
analysis_box = gr.Textbox(label="Analysis", interactive=False)
|
| 291 |
+
description_box = gr.Textbox(label="Description", interactive=False)
|
| 292 |
+
scene_box = gr.Textbox(label="Scene", interactive=False)
|
| 293 |
+
search_button.click(
|
| 294 |
+
fn=search_wrapper,
|
| 295 |
+
inputs=[search_mode, text_input, image_input],
|
| 296 |
+
outputs=[text_input, candidate_radio, title_box, artists_box, genre_box, background_box, analysis_box, description_box, scene_box, youtube_box]
|
| 297 |
+
)
|
| 298 |
+
candidate_radio.change(
|
| 299 |
+
fn=show_details,
|
| 300 |
+
inputs=candidate_radio,
|
| 301 |
+
outputs=[title_box, artists_box, genre_box, background_box, analysis_box, description_box, scene_box, youtube_box]
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
demo.launch()
|
config.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
EVAL_SPLIT = 0.01 # Fraction of training data used for evaluation
|
| 2 |
+
WANDB_KEY = "<YOUR_WANDB_KEY>" # Weights and Biases API key
|
| 3 |
+
|
| 4 |
+
# -------------------- Configuration for M3 Training --------------------
|
| 5 |
+
M3_TRAIN_FOLDERS = [
|
| 6 |
+
"<YOUR_TRAINING_DATA_FOLDER>" # Directory containing training data for M3
|
| 7 |
+
]
|
| 8 |
+
|
| 9 |
+
M3_EVAL_FOLDERS = [
|
| 10 |
+
"<YOUR_EVALUATION_DATA_FOLDER>" # Directory containing evaluation data for M3 (optional)
|
| 11 |
+
]
|
| 12 |
+
|
| 13 |
+
PATCH_SIZE = 64 # Size of each patch
|
| 14 |
+
PATCH_LENGTH = 512 # Length of the patches
|
| 15 |
+
PATCH_NUM_LAYERS = 12 # Number of layers in the encoder
|
| 16 |
+
TOKEN_NUM_LAYERS = 3 # Number of layers in the decoder
|
| 17 |
+
M3_HIDDEN_SIZE = 768 # Size of the hidden layer
|
| 18 |
+
|
| 19 |
+
M3_NUM_EPOCH = 100 # Maximum number of epochs for training
|
| 20 |
+
M3_LEARNING_RATE = 1e-4 # Learning rate for the optimizer
|
| 21 |
+
M3_BATCH_SIZE = 16 # Batch size per GPU (single card) during training
|
| 22 |
+
M3_MASK_RATIO = 0.45 # Ratio of masked elements during training
|
| 23 |
+
M3_DETERMINISTIC = True # Ensures deterministic results with random seeds
|
| 24 |
+
M3_WANDB_LOG = True # Enable logging to Weights and Biases
|
| 25 |
+
M3_LOAD_CKPT = True # Load model weights from a checkpoint if available
|
| 26 |
+
|
| 27 |
+
M3_WEIGHTS_PATH = (
|
| 28 |
+
"weights_m3"+
|
| 29 |
+
"_h_size_" + str(M3_HIDDEN_SIZE) +
|
| 30 |
+
"_t_layers_" + str(TOKEN_NUM_LAYERS) +
|
| 31 |
+
"_p_layers_" + str(PATCH_NUM_LAYERS) +
|
| 32 |
+
"_p_size_" + str(PATCH_SIZE) +
|
| 33 |
+
"_p_length_" + str(PATCH_LENGTH) +
|
| 34 |
+
"_lr_" + str(M3_LEARNING_RATE) +
|
| 35 |
+
"_batch_" + str(M3_BATCH_SIZE) +
|
| 36 |
+
"_mask_" + str(M3_MASK_RATIO) + ".pth"
|
| 37 |
+
) # Path to store the model weights
|
| 38 |
+
M3_LOGS_PATH = M3_WEIGHTS_PATH.replace("weights", "logs").replace("pth", "txt") # Path to save training logs
|
| 39 |
+
|
| 40 |
+
# -------------------- Configuration for CLaMP3 Training ----------------
|
| 41 |
+
CLAMP3_TRAIN_JSONL = "<YOUR_TRAINING_JSONL_FILE>" # Path to the JSONL file with training data for CLaMP3
|
| 42 |
+
CLAMP3_EVAL_JSONL = "<YOUR_EVALUATION_JSONL_FILE>" # Path to the JSONL file with evaluation data for CLaMP3 (optional)
|
| 43 |
+
|
| 44 |
+
CLAMP3_HIDDEN_SIZE = 768 # Size of the hidden layer
|
| 45 |
+
TEXT_MODEL_NAME = "FacebookAI/xlm-roberta-base" # Name of the pre-trained text model
|
| 46 |
+
MAX_TEXT_LENGTH = 128 # Maximum allowed length for text input
|
| 47 |
+
|
| 48 |
+
AUDIO_HIDDEN_SIZE = 768 # Size of the hidden layer for audio features
|
| 49 |
+
AUDIO_NUM_LAYERS = 12 # Number of layers in the audio encoder
|
| 50 |
+
MAX_AUDIO_LENGTH = 128 # Maximum allowed length for audio input
|
| 51 |
+
|
| 52 |
+
CLAMP3_NUM_EPOCH = 100 # Maximum number of epochs for training
|
| 53 |
+
CLAMP3_LEARNING_RATE = 1e-5 # Learning rate for the optimizer
|
| 54 |
+
CLAMP3_BATCH_SIZE = 256 # Batch size per GPU (single card) during training
|
| 55 |
+
LOGIT_SCALE = 1 # Scaling factor for contrastive loss
|
| 56 |
+
|
| 57 |
+
FREEZE_TEXT = False # Freeze the weights of the text model and text projection layer
|
| 58 |
+
TEXT_DROPOUT = True # Whether to apply dropout during text processing
|
| 59 |
+
CLAMP3_DETERMINISTIC = True # Ensures deterministic results with random seeds
|
| 60 |
+
CLAMP3_LOAD_M3 = True # Load weights from the M3 model
|
| 61 |
+
CLAMP3_WANDB_LOG = True # Enable logging to Weights and Biases
|
| 62 |
+
CLAMP3_LOAD_CKPT = True # Load weights from a checkpoint if available
|
| 63 |
+
SAVE_EVERY = 5 # Save model weights every SAVE_EVERY epochs
|
| 64 |
+
|
| 65 |
+
CLAMP3_WEIGHTS_PATH = (
|
| 66 |
+
"weights_clamp3_saas" +
|
| 67 |
+
"_h_size_" + str(CLAMP3_HIDDEN_SIZE) +
|
| 68 |
+
"_t_model_" + TEXT_MODEL_NAME.replace("/", "_") +
|
| 69 |
+
"_t_length_" + str(MAX_TEXT_LENGTH) +
|
| 70 |
+
"_a_size_" + str(AUDIO_HIDDEN_SIZE) +
|
| 71 |
+
"_a_layers_" + str(AUDIO_NUM_LAYERS) +
|
| 72 |
+
"_a_length_" + str(MAX_AUDIO_LENGTH) +
|
| 73 |
+
"_s_size_" + str(M3_HIDDEN_SIZE) +
|
| 74 |
+
"_s_layers_" + str(PATCH_NUM_LAYERS) +
|
| 75 |
+
"_p_size_" + str(PATCH_SIZE) +
|
| 76 |
+
"_p_length_" + str(PATCH_LENGTH) + ".pth"
|
| 77 |
+
|
| 78 |
+
) # Path to store CLaMP3 model weights
|
| 79 |
+
CLAMP3_LOGS_PATH = CLAMP3_WEIGHTS_PATH.replace("weights", "logs").replace("pth", "txt") # Path to save training logs
|
extract_clamp3.py
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
from config import *
|
| 6 |
+
from utils import *
|
| 7 |
+
from samplings import *
|
| 8 |
+
from accelerate import Accelerator
|
| 9 |
+
from transformers import BertConfig, AutoTokenizer
|
| 10 |
+
import argparse
|
| 11 |
+
|
| 12 |
+
# Parse command-line arguments
|
| 13 |
+
parser = argparse.ArgumentParser(description="Feature extraction for CLaMP3.")
|
| 14 |
+
parser.add_argument("--epoch", type=str, default=None, help="Epoch of the checkpoint to load.")
|
| 15 |
+
parser.add_argument("input_dir", type=str, help="Directory containing input data files.")
|
| 16 |
+
parser.add_argument("output_dir", type=str, help="Directory to save the output features.")
|
| 17 |
+
parser.add_argument("--get_global", action="store_true", help="Get global feature.")
|
| 18 |
+
|
| 19 |
+
args = parser.parse_args()
|
| 20 |
+
|
| 21 |
+
# Retrieve arguments
|
| 22 |
+
epoch = args.epoch
|
| 23 |
+
input_dir = args.input_dir
|
| 24 |
+
output_dir = args.output_dir
|
| 25 |
+
get_global = args.get_global
|
| 26 |
+
|
| 27 |
+
files = []
|
| 28 |
+
for root, dirs, fs in os.walk(input_dir):
|
| 29 |
+
for f in fs:
|
| 30 |
+
if f.endswith(".txt") or f.endswith(".abc") or f.endswith(".mtf") or f.endswith(".npy"):
|
| 31 |
+
files.append(os.path.join(root, f))
|
| 32 |
+
|
| 33 |
+
print(f"Found {len(files)} files in total")
|
| 34 |
+
|
| 35 |
+
# Initialize accelerator and device
|
| 36 |
+
accelerator = Accelerator()
|
| 37 |
+
device = accelerator.device
|
| 38 |
+
print("Using device:", device)
|
| 39 |
+
|
| 40 |
+
# Model and configuration setup
|
| 41 |
+
audio_config = BertConfig(vocab_size=1,
|
| 42 |
+
hidden_size=AUDIO_HIDDEN_SIZE,
|
| 43 |
+
num_hidden_layers=AUDIO_NUM_LAYERS,
|
| 44 |
+
num_attention_heads=AUDIO_HIDDEN_SIZE//64,
|
| 45 |
+
intermediate_size=AUDIO_HIDDEN_SIZE*4,
|
| 46 |
+
max_position_embeddings=MAX_AUDIO_LENGTH)
|
| 47 |
+
symbolic_config = BertConfig(vocab_size=1,
|
| 48 |
+
hidden_size=M3_HIDDEN_SIZE,
|
| 49 |
+
num_hidden_layers=PATCH_NUM_LAYERS,
|
| 50 |
+
num_attention_heads=M3_HIDDEN_SIZE//64,
|
| 51 |
+
intermediate_size=M3_HIDDEN_SIZE*4,
|
| 52 |
+
max_position_embeddings=PATCH_LENGTH)
|
| 53 |
+
model = CLaMP3Model(audio_config=audio_config,
|
| 54 |
+
symbolic_config=symbolic_config,
|
| 55 |
+
text_model_name=TEXT_MODEL_NAME,
|
| 56 |
+
hidden_size=CLAMP3_HIDDEN_SIZE,
|
| 57 |
+
load_m3=CLAMP3_LOAD_M3)
|
| 58 |
+
model = model.to(device)
|
| 59 |
+
|
| 60 |
+
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_NAME)
|
| 61 |
+
patchilizer = M3Patchilizer()
|
| 62 |
+
|
| 63 |
+
# print parameter number
|
| 64 |
+
print("Total Parameter Number: "+str(sum(p.numel() for p in model.parameters())))
|
| 65 |
+
|
| 66 |
+
# Load model weights
|
| 67 |
+
model.eval()
|
| 68 |
+
checkpoint_path = CLAMP3_WEIGHTS_PATH
|
| 69 |
+
if epoch is not None:
|
| 70 |
+
checkpoint_path = CLAMP3_WEIGHTS_PATH.replace(".pth", f"_{epoch}.pth")
|
| 71 |
+
checkpoint = torch.load(checkpoint_path, map_location="cpu", weights_only=True)
|
| 72 |
+
print(f"Successfully Loaded CLaMP 3 Checkpoint from Epoch {checkpoint['epoch']} with loss {checkpoint['min_eval_loss']}")
|
| 73 |
+
model.load_state_dict(checkpoint['model'])
|
| 74 |
+
|
| 75 |
+
def extract_feature(filename, get_global=get_global):
|
| 76 |
+
if not filename.endswith(".npy"):
|
| 77 |
+
with open(filename, "r", encoding="utf-8") as f:
|
| 78 |
+
item = f.read()
|
| 79 |
+
|
| 80 |
+
if filename.endswith(".txt"):
|
| 81 |
+
item = list(set(item.split("\n")))
|
| 82 |
+
item = "\n".join(item)
|
| 83 |
+
item = item.split("\n")
|
| 84 |
+
item = [c for c in item if len(c) > 0]
|
| 85 |
+
item = tokenizer.sep_token.join(item)
|
| 86 |
+
input_data = tokenizer(item, return_tensors="pt")
|
| 87 |
+
input_data = input_data['input_ids'].squeeze(0)
|
| 88 |
+
max_input_length = MAX_TEXT_LENGTH
|
| 89 |
+
elif filename.endswith(".abc") or filename.endswith(".mtf"):
|
| 90 |
+
input_data = patchilizer.encode(item, add_special_patches=True)
|
| 91 |
+
input_data = torch.tensor(input_data)
|
| 92 |
+
max_input_length = PATCH_LENGTH
|
| 93 |
+
elif filename.endswith(".npy"):
|
| 94 |
+
input_data = np.load(filename)
|
| 95 |
+
input_data = torch.tensor(input_data)
|
| 96 |
+
input_data = input_data.reshape(-1, input_data.size(-1))
|
| 97 |
+
zero_vec = torch.zeros((1, input_data.size(-1)))
|
| 98 |
+
input_data = torch.cat((zero_vec, input_data, zero_vec), 0)
|
| 99 |
+
max_input_length = MAX_AUDIO_LENGTH
|
| 100 |
+
else:
|
| 101 |
+
raise ValueError(f"Unsupported file type: {filename}, only support .txt, .abc, .mtf, .npy files")
|
| 102 |
+
|
| 103 |
+
segment_list = []
|
| 104 |
+
for i in range(0, len(input_data), max_input_length):
|
| 105 |
+
segment_list.append(input_data[i:i+max_input_length])
|
| 106 |
+
segment_list[-1] = input_data[-max_input_length:]
|
| 107 |
+
|
| 108 |
+
last_hidden_states_list = []
|
| 109 |
+
|
| 110 |
+
for input_segment in segment_list:
|
| 111 |
+
input_masks = torch.tensor([1]*input_segment.size(0))
|
| 112 |
+
if filename.endswith(".txt"):
|
| 113 |
+
pad_indices = torch.ones(MAX_TEXT_LENGTH - input_segment.size(0)).long() * tokenizer.pad_token_id
|
| 114 |
+
elif filename.endswith(".abc") or filename.endswith(".mtf"):
|
| 115 |
+
pad_indices = torch.ones((PATCH_LENGTH - input_segment.size(0), PATCH_SIZE)).long() * patchilizer.pad_token_id
|
| 116 |
+
else:
|
| 117 |
+
pad_indices = torch.ones((MAX_AUDIO_LENGTH - input_segment.size(0), AUDIO_HIDDEN_SIZE)).float() * 0.
|
| 118 |
+
input_masks = torch.cat((input_masks, torch.zeros(max_input_length - input_segment.size(0))), 0)
|
| 119 |
+
input_segment = torch.cat((input_segment, pad_indices), 0)
|
| 120 |
+
|
| 121 |
+
if filename.endswith(".txt"):
|
| 122 |
+
last_hidden_states = model.get_text_features(text_inputs=input_segment.unsqueeze(0).to(device),
|
| 123 |
+
text_masks=input_masks.unsqueeze(0).to(device),
|
| 124 |
+
get_global=get_global)
|
| 125 |
+
elif filename.endswith(".abc") or filename.endswith(".mtf"):
|
| 126 |
+
last_hidden_states = model.get_symbolic_features(symbolic_inputs=input_segment.unsqueeze(0).to(device),
|
| 127 |
+
symbolic_masks=input_masks.unsqueeze(0).to(device),
|
| 128 |
+
get_global=get_global)
|
| 129 |
+
else:
|
| 130 |
+
last_hidden_states = model.get_audio_features(audio_inputs=input_segment.unsqueeze(0).to(device),
|
| 131 |
+
audio_masks=input_masks.unsqueeze(0).to(device),
|
| 132 |
+
get_global=get_global)
|
| 133 |
+
if not get_global:
|
| 134 |
+
last_hidden_states = last_hidden_states[:, :input_masks.sum().long().item(), :]
|
| 135 |
+
last_hidden_states_list.append(last_hidden_states)
|
| 136 |
+
|
| 137 |
+
if not get_global:
|
| 138 |
+
last_hidden_states_list = [last_hidden_states[0] for last_hidden_states in last_hidden_states_list]
|
| 139 |
+
last_hidden_states_list[-1] = last_hidden_states_list[-1][-(len(input_data)%max_input_length):]
|
| 140 |
+
last_hidden_states_list = torch.concat(last_hidden_states_list, 0)
|
| 141 |
+
else:
|
| 142 |
+
full_chunk_cnt = len(input_data) // max_input_length
|
| 143 |
+
remain_chunk_len = len(input_data) % max_input_length
|
| 144 |
+
if remain_chunk_len == 0:
|
| 145 |
+
feature_weights = torch.tensor([max_input_length] * full_chunk_cnt, device=device).view(-1, 1)
|
| 146 |
+
else:
|
| 147 |
+
feature_weights = torch.tensor([max_input_length] * full_chunk_cnt + [remain_chunk_len], device=device).view(-1, 1)
|
| 148 |
+
|
| 149 |
+
last_hidden_states_list = torch.concat(last_hidden_states_list, 0)
|
| 150 |
+
last_hidden_states_list = last_hidden_states_list * feature_weights
|
| 151 |
+
last_hidden_states_list = last_hidden_states_list.sum(dim=0) / feature_weights.sum()
|
| 152 |
+
|
| 153 |
+
return last_hidden_states_list
|
| 154 |
+
|
| 155 |
+
def process_directory(input_dir, output_dir, files):
|
| 156 |
+
# calculate the number of files to process per GPU
|
| 157 |
+
num_files_per_gpu = len(files) // accelerator.num_processes
|
| 158 |
+
|
| 159 |
+
# calculate the start and end index for the current GPU
|
| 160 |
+
start_idx = accelerator.process_index * num_files_per_gpu
|
| 161 |
+
end_idx = start_idx + num_files_per_gpu
|
| 162 |
+
if accelerator.process_index == accelerator.num_processes - 1:
|
| 163 |
+
end_idx = len(files)
|
| 164 |
+
|
| 165 |
+
files_to_process = files[start_idx:end_idx]
|
| 166 |
+
|
| 167 |
+
# process the files
|
| 168 |
+
for file in tqdm(files_to_process):
|
| 169 |
+
output_subdir = output_dir + os.path.dirname(file)[len(input_dir):]
|
| 170 |
+
try:
|
| 171 |
+
os.makedirs(output_subdir, exist_ok=True)
|
| 172 |
+
except Exception as e:
|
| 173 |
+
print(output_subdir + " can not be created\n" + str(e))
|
| 174 |
+
|
| 175 |
+
output_file = os.path.join(output_subdir, os.path.splitext(os.path.basename(file))[0] + ".npy")
|
| 176 |
+
|
| 177 |
+
if os.path.exists(output_file):
|
| 178 |
+
print(f"Skipping {file}, output already exists")
|
| 179 |
+
continue
|
| 180 |
+
|
| 181 |
+
try:
|
| 182 |
+
with torch.no_grad():
|
| 183 |
+
features = extract_feature(file).unsqueeze(0)
|
| 184 |
+
np.save(output_file, features.detach().cpu().numpy())
|
| 185 |
+
except Exception as e:
|
| 186 |
+
print(f"Failed to process {file}: {e}")
|
| 187 |
+
|
| 188 |
+
# process the files
|
| 189 |
+
process_directory(input_dir, output_dir, files)
|
features.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:60273370643e51e092a466d0e9a28041cfc944b2d0b55f6fbe926081ce1ff570
|
| 3 |
+
size 6242016
|
requirements.txt
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# PyTorch (CPU-only version)
|
| 2 |
+
torch==2.4.0
|
| 3 |
+
torchvision==0.19.0
|
| 4 |
+
torchaudio==2.4.0
|
| 5 |
+
-f https://download.pytorch.org/whl/cpu
|
| 6 |
+
|
| 7 |
+
# Core dependencies
|
| 8 |
+
numpy==1.26.4
|
| 9 |
+
scipy==1.14.1
|
| 10 |
+
scikit-learn==1.5.1
|
| 11 |
+
pandas==1.3.5
|
| 12 |
+
tqdm==4.66.5
|
| 13 |
+
requests==2.32.3
|
| 14 |
+
pillow==9.5.0
|
| 15 |
+
pyyaml==6.0.1
|
| 16 |
+
typing-extensions==4.12.2
|
| 17 |
+
|
| 18 |
+
# Transformers and optimization
|
| 19 |
+
transformers==4.40.0
|
| 20 |
+
optimum==1.21.4
|
| 21 |
+
tokenizers==0.19.1
|
| 22 |
+
sentencepiece==0.2.0
|
| 23 |
+
safetensors==0.4.4
|
| 24 |
+
accelerate==0.34.0
|
| 25 |
+
|
| 26 |
+
# Audio processing
|
| 27 |
+
librosa==0.10.1
|
| 28 |
+
soundfile==0.12.1
|
| 29 |
+
pydub==0.25.1
|
| 30 |
+
soxr==0.5.0.post1
|
| 31 |
+
audioread==3.0.1
|
| 32 |
+
nnAudio==0.3.3
|
| 33 |
+
|
| 34 |
+
# MIDI and music processing
|
| 35 |
+
mido==1.3.0
|
| 36 |
+
music21==7.3.3
|
| 37 |
+
abctoolkit==0.0.4
|
| 38 |
+
|
| 39 |
+
# Natural language processing and text utilities
|
| 40 |
+
nltk==3.8.1
|
| 41 |
+
sacrebleu==2.4.3
|
| 42 |
+
sacremoses==0.0.53
|
| 43 |
+
langdetect==1.0.9
|
| 44 |
+
langid==1.1.6
|
| 45 |
+
language-data==1.2.0
|
| 46 |
+
regex==2023.8.8
|
| 47 |
+
unidecode==1.3.6
|
| 48 |
+
|
| 49 |
+
# Hugging Face Hub
|
| 50 |
+
huggingface-hub==0.24.6
|
| 51 |
+
datasets==2.21.0
|
| 52 |
+
|
| 53 |
+
# Logging and tracking
|
| 54 |
+
wandb==0.17.8
|
| 55 |
+
setproctitle==1.3.3
|
| 56 |
+
sentry-sdk==2.13.0
|
| 57 |
+
|
| 58 |
+
# Utilities
|
| 59 |
+
protobuf==5.28.0
|
| 60 |
+
filelock==3.12.2
|
| 61 |
+
tabulate==0.9.0
|
| 62 |
+
dill==0.3.8
|
| 63 |
+
fsspec==2024.6.1
|
| 64 |
+
xxhash==3.5.0
|
| 65 |
+
gitpython==3.1.43
|
| 66 |
+
certifi==2023.7.22
|
| 67 |
+
charset-normalizer==3.2.0
|
| 68 |
+
urllib3==2.0.4
|
| 69 |
+
yarl==1.9.7
|
| 70 |
+
idna==3.4
|
| 71 |
+
samplings==0.1.7
|
| 72 |
+
six==1.16.0
|
utils.py
ADDED
|
@@ -0,0 +1,574 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import os
|
| 3 |
+
import math
|
| 4 |
+
import torch
|
| 5 |
+
import random
|
| 6 |
+
from config import *
|
| 7 |
+
from unidecode import unidecode
|
| 8 |
+
from torch.nn import functional as F
|
| 9 |
+
from transformers import AutoModel, BertModel, GPT2LMHeadModel, PreTrainedModel, GPT2Config
|
| 10 |
+
|
| 11 |
+
try:
|
| 12 |
+
import torch.distributed.nn
|
| 13 |
+
from torch import distributed as dist
|
| 14 |
+
|
| 15 |
+
has_distributed = True
|
| 16 |
+
except ImportError:
|
| 17 |
+
has_distributed = False
|
| 18 |
+
|
| 19 |
+
try:
|
| 20 |
+
import horovod.torch as hvd
|
| 21 |
+
except ImportError:
|
| 22 |
+
hvd = None
|
| 23 |
+
|
| 24 |
+
class ClipLoss(torch.nn.Module):
|
| 25 |
+
|
| 26 |
+
def __init__(
|
| 27 |
+
self,
|
| 28 |
+
local_loss=False,
|
| 29 |
+
gather_with_grad=False,
|
| 30 |
+
cache_labels=False,
|
| 31 |
+
rank=0,
|
| 32 |
+
world_size=1,
|
| 33 |
+
use_horovod=False,
|
| 34 |
+
):
|
| 35 |
+
super().__init__()
|
| 36 |
+
self.local_loss = local_loss
|
| 37 |
+
self.gather_with_grad = gather_with_grad
|
| 38 |
+
self.cache_labels = cache_labels
|
| 39 |
+
self.rank = rank
|
| 40 |
+
self.world_size = world_size
|
| 41 |
+
self.use_horovod = use_horovod
|
| 42 |
+
|
| 43 |
+
# cache state
|
| 44 |
+
self.prev_num_logits = 0
|
| 45 |
+
self.labels = {}
|
| 46 |
+
|
| 47 |
+
def gather_features(
|
| 48 |
+
self,
|
| 49 |
+
image_features,
|
| 50 |
+
text_features,
|
| 51 |
+
local_loss=False,
|
| 52 |
+
gather_with_grad=False,
|
| 53 |
+
rank=0,
|
| 54 |
+
world_size=1,
|
| 55 |
+
use_horovod=False
|
| 56 |
+
):
|
| 57 |
+
assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.'
|
| 58 |
+
if use_horovod:
|
| 59 |
+
assert hvd is not None, 'Please install horovod'
|
| 60 |
+
if gather_with_grad:
|
| 61 |
+
all_image_features = hvd.allgather(image_features)
|
| 62 |
+
all_text_features = hvd.allgather(text_features)
|
| 63 |
+
else:
|
| 64 |
+
with torch.no_grad():
|
| 65 |
+
all_image_features = hvd.allgather(image_features)
|
| 66 |
+
all_text_features = hvd.allgather(text_features)
|
| 67 |
+
if not local_loss:
|
| 68 |
+
# ensure grads for local rank when all_* features don't have a gradient
|
| 69 |
+
gathered_image_features = list(all_image_features.chunk(world_size, dim=0))
|
| 70 |
+
gathered_text_features = list(all_text_features.chunk(world_size, dim=0))
|
| 71 |
+
gathered_image_features[rank] = image_features
|
| 72 |
+
gathered_text_features[rank] = text_features
|
| 73 |
+
all_image_features = torch.cat(gathered_image_features, dim=0)
|
| 74 |
+
all_text_features = torch.cat(gathered_text_features, dim=0)
|
| 75 |
+
else:
|
| 76 |
+
# We gather tensors from all gpus
|
| 77 |
+
if gather_with_grad:
|
| 78 |
+
all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0)
|
| 79 |
+
all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0)
|
| 80 |
+
else:
|
| 81 |
+
gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)]
|
| 82 |
+
gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)]
|
| 83 |
+
dist.all_gather(gathered_image_features, image_features)
|
| 84 |
+
dist.all_gather(gathered_text_features, text_features)
|
| 85 |
+
if not local_loss:
|
| 86 |
+
# ensure grads for local rank when all_* features don't have a gradient
|
| 87 |
+
gathered_image_features[rank] = image_features
|
| 88 |
+
gathered_text_features[rank] = text_features
|
| 89 |
+
all_image_features = torch.cat(gathered_image_features, dim=0)
|
| 90 |
+
all_text_features = torch.cat(gathered_text_features, dim=0)
|
| 91 |
+
|
| 92 |
+
return all_image_features, all_text_features
|
| 93 |
+
|
| 94 |
+
def get_ground_truth(self, device, num_logits) -> torch.Tensor:
|
| 95 |
+
# calculated ground-truth and cache if enabled
|
| 96 |
+
if self.prev_num_logits != num_logits or device not in self.labels:
|
| 97 |
+
labels = torch.arange(num_logits, device=device, dtype=torch.long)
|
| 98 |
+
if self.world_size > 1 and self.local_loss:
|
| 99 |
+
labels = labels + num_logits * self.rank
|
| 100 |
+
if self.cache_labels:
|
| 101 |
+
self.labels[device] = labels
|
| 102 |
+
self.prev_num_logits = num_logits
|
| 103 |
+
else:
|
| 104 |
+
labels = self.labels[device]
|
| 105 |
+
return labels
|
| 106 |
+
|
| 107 |
+
def get_logits(self, image_features, text_features, logit_scale):
|
| 108 |
+
if self.world_size > 1:
|
| 109 |
+
all_image_features, all_text_features = self.gather_features(
|
| 110 |
+
image_features, text_features,
|
| 111 |
+
self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod)
|
| 112 |
+
|
| 113 |
+
if self.local_loss:
|
| 114 |
+
logits_per_image = logit_scale * image_features @ all_text_features.T
|
| 115 |
+
logits_per_text = logit_scale * text_features @ all_image_features.T
|
| 116 |
+
else:
|
| 117 |
+
logits_per_image = logit_scale * all_image_features @ all_text_features.T
|
| 118 |
+
logits_per_text = logits_per_image.T
|
| 119 |
+
else:
|
| 120 |
+
logits_per_image = logit_scale * image_features @ text_features.T
|
| 121 |
+
logits_per_text = logit_scale * text_features @ image_features.T
|
| 122 |
+
|
| 123 |
+
return logits_per_image, logits_per_text
|
| 124 |
+
|
| 125 |
+
def forward(self, image_features, text_features, logit_scale, output_dict=False):
|
| 126 |
+
device = image_features.device
|
| 127 |
+
logits_per_image, logits_per_text = self.get_logits(image_features, text_features, logit_scale)
|
| 128 |
+
|
| 129 |
+
labels = self.get_ground_truth(device, logits_per_image.shape[0])
|
| 130 |
+
|
| 131 |
+
total_loss = (
|
| 132 |
+
F.cross_entropy(logits_per_image, labels) +
|
| 133 |
+
F.cross_entropy(logits_per_text, labels)
|
| 134 |
+
) / 2
|
| 135 |
+
|
| 136 |
+
return {"contrastive_loss": total_loss} if output_dict else total_loss
|
| 137 |
+
|
| 138 |
+
class M3Patchilizer:
|
| 139 |
+
def __init__(self):
|
| 140 |
+
self.delimiters = ["|:", "::", ":|", "[|", "||", "|]", "|"]
|
| 141 |
+
self.regexPattern = '(' + '|'.join(map(re.escape, self.delimiters)) + ')'
|
| 142 |
+
self.pad_token_id = 0
|
| 143 |
+
self.bos_token_id = 1
|
| 144 |
+
self.eos_token_id = 2
|
| 145 |
+
self.mask_token_id = 3
|
| 146 |
+
|
| 147 |
+
def split_bars(self, body):
|
| 148 |
+
bars = re.split(self.regexPattern, ''.join(body))
|
| 149 |
+
bars = list(filter(None, bars)) # remove empty strings
|
| 150 |
+
if bars[0] in self.delimiters:
|
| 151 |
+
bars[1] = bars[0] + bars[1]
|
| 152 |
+
bars = bars[1:]
|
| 153 |
+
bars = [bars[i * 2] + bars[i * 2 + 1] for i in range(len(bars) // 2)]
|
| 154 |
+
return bars
|
| 155 |
+
|
| 156 |
+
def bar2patch(self, bar, patch_size=PATCH_SIZE):
|
| 157 |
+
patch = [self.bos_token_id] + [ord(c) for c in bar] + [self.eos_token_id]
|
| 158 |
+
patch = patch[:patch_size]
|
| 159 |
+
patch += [self.pad_token_id] * (patch_size - len(patch))
|
| 160 |
+
return patch
|
| 161 |
+
|
| 162 |
+
def patch2bar(self, patch):
|
| 163 |
+
return ''.join(chr(idx) if idx > self.mask_token_id else '' for idx in patch)
|
| 164 |
+
|
| 165 |
+
def encode(self,
|
| 166 |
+
item,
|
| 167 |
+
patch_size=PATCH_SIZE,
|
| 168 |
+
add_special_patches=False,
|
| 169 |
+
truncate=False,
|
| 170 |
+
random_truncate=False):
|
| 171 |
+
item = item.replace("L:1/8\n", "")
|
| 172 |
+
item = unidecode(item)
|
| 173 |
+
lines = re.findall(r'.*?\n|.*$', item)
|
| 174 |
+
lines = list(filter(None, lines)) # remove empty lines
|
| 175 |
+
|
| 176 |
+
patches = []
|
| 177 |
+
|
| 178 |
+
if lines[0].split(" ")[0] == "ticks_per_beat":
|
| 179 |
+
patch = ""
|
| 180 |
+
for line in lines:
|
| 181 |
+
if patch.startswith(line.split(" ")[0]) and (len(patch) + len(" ".join(line.split(" ")[1:])) <= patch_size-2):
|
| 182 |
+
patch = patch[:-1] + "\t" + " ".join(line.split(" ")[1:])
|
| 183 |
+
else:
|
| 184 |
+
if patch:
|
| 185 |
+
patches.append(patch)
|
| 186 |
+
patch = line
|
| 187 |
+
if patch!="":
|
| 188 |
+
patches.append(patch)
|
| 189 |
+
else:
|
| 190 |
+
for line in lines:
|
| 191 |
+
if len(line) > 1 and ((line[0].isalpha() and line[1] == ':') or line.startswith('%%')):
|
| 192 |
+
patches.append(line)
|
| 193 |
+
else:
|
| 194 |
+
bars = self.split_bars(line)
|
| 195 |
+
if bars:
|
| 196 |
+
bars[-1] += '\n'
|
| 197 |
+
patches.extend(bars)
|
| 198 |
+
|
| 199 |
+
if add_special_patches:
|
| 200 |
+
bos_patch = chr(self.bos_token_id) * patch_size
|
| 201 |
+
eos_patch = chr(self.eos_token_id) * patch_size
|
| 202 |
+
patches = [bos_patch] + patches + [eos_patch]
|
| 203 |
+
|
| 204 |
+
if len(patches) > PATCH_LENGTH and truncate:
|
| 205 |
+
choices = ["head", "tail", "middle"]
|
| 206 |
+
choice = random.choice(choices)
|
| 207 |
+
if choice=="head" or random_truncate==False:
|
| 208 |
+
patches = patches[:PATCH_LENGTH]
|
| 209 |
+
elif choice=="tail":
|
| 210 |
+
patches = patches[-PATCH_LENGTH:]
|
| 211 |
+
else:
|
| 212 |
+
start = random.randint(1, len(patches)-PATCH_LENGTH)
|
| 213 |
+
patches = patches[start:start+PATCH_LENGTH]
|
| 214 |
+
|
| 215 |
+
patches = [self.bar2patch(patch) for patch in patches]
|
| 216 |
+
|
| 217 |
+
return patches
|
| 218 |
+
|
| 219 |
+
def decode(self, patches):
|
| 220 |
+
return ''.join(self.patch2bar(patch) for patch in patches)
|
| 221 |
+
|
| 222 |
+
class M3PatchEncoder(PreTrainedModel):
|
| 223 |
+
def __init__(self, config):
|
| 224 |
+
super(M3PatchEncoder, self).__init__(config)
|
| 225 |
+
self.patch_embedding = torch.nn.Linear(PATCH_SIZE*128, M3_HIDDEN_SIZE)
|
| 226 |
+
torch.nn.init.normal_(self.patch_embedding.weight, std=0.02)
|
| 227 |
+
self.base = BertModel(config=config)
|
| 228 |
+
self.pad_token_id = 0
|
| 229 |
+
self.bos_token_id = 1
|
| 230 |
+
self.eos_token_id = 2
|
| 231 |
+
self.mask_token_id = 3
|
| 232 |
+
|
| 233 |
+
def forward(self,
|
| 234 |
+
input_patches, # [batch_size, seq_length, hidden_size]
|
| 235 |
+
input_masks): # [batch_size, seq_length]
|
| 236 |
+
# Transform input_patches into embeddings
|
| 237 |
+
input_patches = torch.nn.functional.one_hot(input_patches, num_classes=128)
|
| 238 |
+
input_patches = input_patches.reshape(len(input_patches), -1, PATCH_SIZE*128).type(torch.FloatTensor)
|
| 239 |
+
input_patches = self.patch_embedding(input_patches.to(self.device))
|
| 240 |
+
|
| 241 |
+
# Apply BERT model to input_patches and input_masks
|
| 242 |
+
return self.base(inputs_embeds=input_patches, attention_mask=input_masks)
|
| 243 |
+
|
| 244 |
+
class M3TokenDecoder(PreTrainedModel):
|
| 245 |
+
def __init__(self, config):
|
| 246 |
+
super(M3TokenDecoder, self).__init__(config)
|
| 247 |
+
self.base = GPT2LMHeadModel(config=config)
|
| 248 |
+
self.pad_token_id = 0
|
| 249 |
+
self.bos_token_id = 1
|
| 250 |
+
self.eos_token_id = 2
|
| 251 |
+
self.mask_token_id = 3
|
| 252 |
+
|
| 253 |
+
def forward(self,
|
| 254 |
+
patch_features, # [batch_size, hidden_size]
|
| 255 |
+
target_patches): # [batch_size, seq_length]
|
| 256 |
+
# get input embeddings
|
| 257 |
+
inputs_embeds = torch.nn.functional.embedding(target_patches, self.base.transformer.wte.weight)
|
| 258 |
+
|
| 259 |
+
# concatenate the encoded patches with the input embeddings
|
| 260 |
+
inputs_embeds = torch.cat((patch_features.unsqueeze(1), inputs_embeds[:,1:,:]), dim=1)
|
| 261 |
+
|
| 262 |
+
# preparing the labels for model training
|
| 263 |
+
target_masks = target_patches == self.pad_token_id
|
| 264 |
+
target_patches = target_patches.clone().masked_fill_(target_masks, -100)
|
| 265 |
+
|
| 266 |
+
# get the attention mask
|
| 267 |
+
target_masks = ~target_masks
|
| 268 |
+
target_masks = target_masks.type(torch.int)
|
| 269 |
+
|
| 270 |
+
return self.base(inputs_embeds=inputs_embeds,
|
| 271 |
+
attention_mask=target_masks,
|
| 272 |
+
labels=target_patches)
|
| 273 |
+
|
| 274 |
+
def generate(self,
|
| 275 |
+
patch_feature,
|
| 276 |
+
tokens):
|
| 277 |
+
# reshape the patch_feature and tokens
|
| 278 |
+
patch_feature = patch_feature.reshape(1, 1, -1)
|
| 279 |
+
tokens = tokens.reshape(1, -1)
|
| 280 |
+
|
| 281 |
+
# get input embeddings
|
| 282 |
+
tokens = torch.nn.functional.embedding(tokens, self.base.transformer.wte.weight)
|
| 283 |
+
|
| 284 |
+
# concatenate the encoded patches with the input embeddings
|
| 285 |
+
tokens = torch.cat((patch_feature, tokens[:,1:,:]), dim=1)
|
| 286 |
+
|
| 287 |
+
# get the outputs from the model
|
| 288 |
+
outputs = self.base(inputs_embeds=tokens)
|
| 289 |
+
|
| 290 |
+
# get the probabilities of the next token
|
| 291 |
+
probs = torch.nn.functional.softmax(outputs.logits.squeeze(0)[-1], dim=-1)
|
| 292 |
+
|
| 293 |
+
return probs.detach().cpu().numpy()
|
| 294 |
+
|
| 295 |
+
class M3Model(PreTrainedModel):
|
| 296 |
+
def __init__(self, encoder_config, decoder_config):
|
| 297 |
+
super(M3Model, self).__init__(encoder_config)
|
| 298 |
+
self.encoder = M3PatchEncoder(encoder_config)
|
| 299 |
+
self.decoder = M3TokenDecoder(decoder_config)
|
| 300 |
+
self.pad_token_id = 0
|
| 301 |
+
self.bos_token_id = 1
|
| 302 |
+
self.eos_token_id = 2
|
| 303 |
+
self.mask_token_id = 3
|
| 304 |
+
|
| 305 |
+
def forward(self,
|
| 306 |
+
input_patches, # [batch_size, seq_length, hidden_size]
|
| 307 |
+
input_masks, # [batch_size, seq_length]
|
| 308 |
+
selected_indices, # [batch_size, seq_length]
|
| 309 |
+
target_patches): # [batch_size, seq_length, hidden_size]
|
| 310 |
+
input_patches = input_patches.reshape(len(input_patches), -1, PATCH_SIZE).to(self.device)
|
| 311 |
+
input_masks = input_masks.to(self.device)
|
| 312 |
+
selected_indices = selected_indices.to(self.device)
|
| 313 |
+
target_patches = target_patches.reshape(len(target_patches), -1, PATCH_SIZE).to(self.device)
|
| 314 |
+
|
| 315 |
+
# Pass the input_patches and input_masks through the encoder
|
| 316 |
+
outputs = self.encoder(input_patches, input_masks)["last_hidden_state"]
|
| 317 |
+
|
| 318 |
+
# Use selected_indices to form target_patches
|
| 319 |
+
target_patches = target_patches[selected_indices.bool()]
|
| 320 |
+
patch_features = outputs[selected_indices.bool()]
|
| 321 |
+
|
| 322 |
+
# Pass patch_features and target_patches through the decoder
|
| 323 |
+
return self.decoder(patch_features, target_patches)
|
| 324 |
+
|
| 325 |
+
class CLaMP3Model(PreTrainedModel):
|
| 326 |
+
def __init__(self,
|
| 327 |
+
audio_config,
|
| 328 |
+
symbolic_config,
|
| 329 |
+
global_rank=None,
|
| 330 |
+
world_size=None,
|
| 331 |
+
text_model_name=TEXT_MODEL_NAME,
|
| 332 |
+
hidden_size=CLAMP3_HIDDEN_SIZE,
|
| 333 |
+
load_m3=CLAMP3_LOAD_M3):
|
| 334 |
+
super(CLaMP3Model, self).__init__(symbolic_config)
|
| 335 |
+
|
| 336 |
+
self.text_model = AutoModel.from_pretrained(text_model_name) # Load the text model
|
| 337 |
+
self.text_proj = torch.nn.Linear(self.text_model.config.hidden_size, hidden_size) # Linear layer for text projections
|
| 338 |
+
torch.nn.init.normal_(self.text_proj.weight, std=0.02) # Initialize weights with normal distribution
|
| 339 |
+
|
| 340 |
+
self.symbolic_model = M3PatchEncoder(symbolic_config) # Initialize the symbolic model
|
| 341 |
+
self.symbolic_proj = torch.nn.Linear(M3_HIDDEN_SIZE, hidden_size) # Linear layer for symbolic projections
|
| 342 |
+
torch.nn.init.normal_(self.symbolic_proj.weight, std=0.02) # Initialize weights with normal distribution
|
| 343 |
+
|
| 344 |
+
self.audio_model = BertModel(audio_config) # Initialize the audio model
|
| 345 |
+
self.audio_proj = torch.nn.Linear(audio_config.hidden_size, hidden_size) # Linear layer for audio projections
|
| 346 |
+
torch.nn.init.normal_(self.audio_proj.weight, std=0.02) # Initialize weights with normal distribution
|
| 347 |
+
|
| 348 |
+
if global_rank==None or world_size==None:
|
| 349 |
+
global_rank = 0
|
| 350 |
+
world_size = 1
|
| 351 |
+
|
| 352 |
+
self.loss_fn = ClipLoss(local_loss=False,
|
| 353 |
+
gather_with_grad=True,
|
| 354 |
+
cache_labels=False,
|
| 355 |
+
rank=global_rank,
|
| 356 |
+
world_size=world_size,
|
| 357 |
+
use_horovod=False)
|
| 358 |
+
|
| 359 |
+
if load_m3 and os.path.exists(M3_WEIGHTS_PATH):
|
| 360 |
+
checkpoint = torch.load(M3_WEIGHTS_PATH, map_location='cpu', weights_only=True)
|
| 361 |
+
decoder_config = GPT2Config(vocab_size=128,
|
| 362 |
+
n_positions=PATCH_SIZE,
|
| 363 |
+
n_embd=M3_HIDDEN_SIZE,
|
| 364 |
+
n_layer=TOKEN_NUM_LAYERS,
|
| 365 |
+
n_head=M3_HIDDEN_SIZE//64,
|
| 366 |
+
n_inner=M3_HIDDEN_SIZE*4)
|
| 367 |
+
model = M3Model(symbolic_config, decoder_config)
|
| 368 |
+
model.load_state_dict(checkpoint['model'])
|
| 369 |
+
self.symbolic_model = model.encoder
|
| 370 |
+
model = None
|
| 371 |
+
print(f"Successfully Loaded M3 Checkpoint from Epoch {checkpoint['epoch']} with loss {checkpoint['min_eval_loss']}")
|
| 372 |
+
|
| 373 |
+
def set_trainable(self, freeze_list):
|
| 374 |
+
if "text_model" in freeze_list:
|
| 375 |
+
self.text_model.eval()
|
| 376 |
+
for param in self.text_model.parameters():
|
| 377 |
+
param.requires_grad = False
|
| 378 |
+
print("Text Model Frozen")
|
| 379 |
+
else:
|
| 380 |
+
self.text_model.train()
|
| 381 |
+
for param in self.text_model.parameters():
|
| 382 |
+
param.requires_grad = True
|
| 383 |
+
print("Text Model Training")
|
| 384 |
+
|
| 385 |
+
if "text_proj" in freeze_list:
|
| 386 |
+
self.text_proj.eval()
|
| 387 |
+
for param in self.text_proj.parameters():
|
| 388 |
+
param.requires_grad = False
|
| 389 |
+
print("Text Projection Layer Frozen")
|
| 390 |
+
else:
|
| 391 |
+
self.text_proj.train()
|
| 392 |
+
for param in self.text_proj.parameters():
|
| 393 |
+
param.requires_grad = True
|
| 394 |
+
print("Text Projection Layer Training")
|
| 395 |
+
|
| 396 |
+
if "symbolic_model" in freeze_list:
|
| 397 |
+
self.symbolic_model.eval()
|
| 398 |
+
for param in self.symbolic_model.parameters():
|
| 399 |
+
param.requires_grad = False
|
| 400 |
+
print("Symbolic Model Frozen")
|
| 401 |
+
else:
|
| 402 |
+
self.symbolic_model.train()
|
| 403 |
+
for param in self.symbolic_model.parameters():
|
| 404 |
+
param.requires_grad = True
|
| 405 |
+
print("Symbolic Model Training")
|
| 406 |
+
|
| 407 |
+
if "symbolic_proj" in freeze_list:
|
| 408 |
+
self.symbolic_proj.eval()
|
| 409 |
+
for param in self.symbolic_proj.parameters():
|
| 410 |
+
param.requires_grad = False
|
| 411 |
+
print("Symbolic Projection Layer Frozen")
|
| 412 |
+
else:
|
| 413 |
+
self.symbolic_proj.train()
|
| 414 |
+
for param in self.symbolic_proj.parameters():
|
| 415 |
+
param.requires_grad = True
|
| 416 |
+
print("Symbolic Projection Layer Training")
|
| 417 |
+
|
| 418 |
+
if "audio_model" in freeze_list:
|
| 419 |
+
self.audio_model.eval()
|
| 420 |
+
for param in self.audio_model.parameters():
|
| 421 |
+
param.requires_grad = False
|
| 422 |
+
print("Audio Model Frozen")
|
| 423 |
+
else:
|
| 424 |
+
self.audio_model.train()
|
| 425 |
+
for param in self.audio_model.parameters():
|
| 426 |
+
param.requires_grad = True
|
| 427 |
+
print("Audio Model Training")
|
| 428 |
+
|
| 429 |
+
if "audio_proj" in freeze_list:
|
| 430 |
+
self.audio_proj.eval()
|
| 431 |
+
for param in self.audio_proj.parameters():
|
| 432 |
+
param.requires_grad = False
|
| 433 |
+
print("Audio Projection Layer Frozen")
|
| 434 |
+
else:
|
| 435 |
+
self.audio_proj.train()
|
| 436 |
+
for param in self.audio_proj.parameters():
|
| 437 |
+
param.requires_grad = True
|
| 438 |
+
print("Audio Projection Layer Training")
|
| 439 |
+
|
| 440 |
+
def avg_pooling(self, input_features, input_masks):
|
| 441 |
+
input_masks = input_masks.unsqueeze(-1).to(self.device) # add a dimension to match the feature dimension
|
| 442 |
+
input_features = input_features * input_masks # apply mask to input_features
|
| 443 |
+
avg_pool = input_features.sum(dim=1) / input_masks.sum(dim=1) # calculate average pooling
|
| 444 |
+
|
| 445 |
+
return avg_pool
|
| 446 |
+
|
| 447 |
+
def get_text_features(self,
|
| 448 |
+
text_inputs,
|
| 449 |
+
text_masks,
|
| 450 |
+
get_global=False):
|
| 451 |
+
text_features = self.text_model(text_inputs.to(self.device),
|
| 452 |
+
attention_mask=text_masks.to(self.device))['last_hidden_state']
|
| 453 |
+
|
| 454 |
+
if get_global:
|
| 455 |
+
text_features = self.avg_pooling(text_features, text_masks)
|
| 456 |
+
text_features = self.text_proj(text_features)
|
| 457 |
+
|
| 458 |
+
return text_features
|
| 459 |
+
|
| 460 |
+
def get_symbolic_features(self,
|
| 461 |
+
symbolic_inputs,
|
| 462 |
+
symbolic_masks,
|
| 463 |
+
get_global=False):
|
| 464 |
+
symbolic_features = self.symbolic_model(symbolic_inputs.to(self.device),
|
| 465 |
+
symbolic_masks.to(self.device))['last_hidden_state']
|
| 466 |
+
|
| 467 |
+
if get_global:
|
| 468 |
+
symbolic_features = self.avg_pooling(symbolic_features, symbolic_masks)
|
| 469 |
+
symbolic_features = self.symbolic_proj(symbolic_features)
|
| 470 |
+
|
| 471 |
+
return symbolic_features
|
| 472 |
+
|
| 473 |
+
def get_audio_features(self,
|
| 474 |
+
audio_inputs,
|
| 475 |
+
audio_masks,
|
| 476 |
+
get_global=False):
|
| 477 |
+
audio_features = self.audio_model(inputs_embeds=audio_inputs.to(self.device),
|
| 478 |
+
attention_mask=audio_masks.to(self.device))['last_hidden_state']
|
| 479 |
+
|
| 480 |
+
if get_global:
|
| 481 |
+
audio_features = self.avg_pooling(audio_features, audio_masks)
|
| 482 |
+
audio_features = self.audio_proj(audio_features)
|
| 483 |
+
|
| 484 |
+
return audio_features
|
| 485 |
+
|
| 486 |
+
def forward(self,
|
| 487 |
+
text_inputs, # [batch_size, seq_length]
|
| 488 |
+
text_masks, # [batch_size, seq_length]
|
| 489 |
+
music_inputs, # [batch_size, seq_length, hidden_size]
|
| 490 |
+
music_masks, # [batch_size, seq_length]
|
| 491 |
+
music_modality): # "symbolic" or "audio"
|
| 492 |
+
# Compute the text features
|
| 493 |
+
text_features = self.get_text_features(text_inputs, text_masks, get_global=True)
|
| 494 |
+
|
| 495 |
+
# Compute the music features
|
| 496 |
+
if music_modality=="symbolic":
|
| 497 |
+
music_features = self.get_symbolic_features(music_inputs, music_masks, get_global=True)
|
| 498 |
+
elif music_modality=="audio":
|
| 499 |
+
music_features = self.get_audio_features(music_inputs, music_masks, get_global=True)
|
| 500 |
+
else:
|
| 501 |
+
raise ValueError("music_modality must be either 'symbolic' or 'audio'")
|
| 502 |
+
|
| 503 |
+
return self.loss_fn(text_features,
|
| 504 |
+
music_features,
|
| 505 |
+
LOGIT_SCALE,
|
| 506 |
+
output_dict=False)
|
| 507 |
+
|
| 508 |
+
def split_data(data, eval_ratio=EVAL_SPLIT):
|
| 509 |
+
random.shuffle(data)
|
| 510 |
+
split_idx = int(len(data)*eval_ratio)
|
| 511 |
+
eval_set = data[:split_idx]
|
| 512 |
+
train_set = data[split_idx:]
|
| 513 |
+
return train_set, eval_set
|
| 514 |
+
|
| 515 |
+
def mask_patches(target_patches, patchilizer, mode):
|
| 516 |
+
indices = list(range(len(target_patches)))
|
| 517 |
+
random.shuffle(indices)
|
| 518 |
+
selected_indices = indices[:math.ceil(M3_MASK_RATIO*len(indices))]
|
| 519 |
+
sorted_indices = sorted(selected_indices)
|
| 520 |
+
input_patches = torch.tensor(target_patches)
|
| 521 |
+
|
| 522 |
+
if mode=="eval":
|
| 523 |
+
choice = "original"
|
| 524 |
+
else:
|
| 525 |
+
choice = random.choices(["mask", "shuffle", "original"], weights=[0.8, 0.1, 0.1])[0]
|
| 526 |
+
|
| 527 |
+
if choice=="mask":
|
| 528 |
+
input_patches[sorted_indices] = torch.tensor([patchilizer.mask_token_id]*PATCH_SIZE)
|
| 529 |
+
elif choice=="shuffle":
|
| 530 |
+
for idx in sorted_indices:
|
| 531 |
+
patch = input_patches[idx]
|
| 532 |
+
try:
|
| 533 |
+
index_eos = (patch == patchilizer.eos_token_id).nonzero().item()
|
| 534 |
+
except:
|
| 535 |
+
index_eos = len(patch)
|
| 536 |
+
|
| 537 |
+
indices = list(range(1, index_eos))
|
| 538 |
+
random.shuffle(indices)
|
| 539 |
+
indices = [0] + indices + list(range(index_eos, len(patch)))
|
| 540 |
+
input_patches[idx] = patch[indices]
|
| 541 |
+
|
| 542 |
+
selected_indices = torch.zeros(len(target_patches))
|
| 543 |
+
selected_indices[sorted_indices] = 1.
|
| 544 |
+
|
| 545 |
+
return input_patches, selected_indices
|
| 546 |
+
|
| 547 |
+
def remove_instrument_info(item):
|
| 548 |
+
# remove instrument information from symbolic music
|
| 549 |
+
lines = re.findall(r'.*?\n|.*$', item)
|
| 550 |
+
lines = list(filter(None, lines))
|
| 551 |
+
if lines[0].split(" ")[0] == "ticks_per_beat":
|
| 552 |
+
type = "mtf"
|
| 553 |
+
else:
|
| 554 |
+
type = "abc"
|
| 555 |
+
|
| 556 |
+
cleaned_lines = []
|
| 557 |
+
for line in lines:
|
| 558 |
+
if type=="abc" and line.startswith("V:"):
|
| 559 |
+
# find the position of " nm=" or " snm="
|
| 560 |
+
nm_pos = line.find(" nm=")
|
| 561 |
+
snm_pos = line.find(" snm=")
|
| 562 |
+
# keep the part before " nm=" or " snm="
|
| 563 |
+
if nm_pos != -1:
|
| 564 |
+
line = line[:nm_pos]
|
| 565 |
+
elif snm_pos != -1:
|
| 566 |
+
line = line[:snm_pos]
|
| 567 |
+
if nm_pos != -1 or snm_pos != -1:
|
| 568 |
+
line += "\n"
|
| 569 |
+
elif type=="mtf" and line.startswith("program_change"):
|
| 570 |
+
line = " ".join(line.split(" ")[:-1]) + " 0\n"
|
| 571 |
+
|
| 572 |
+
cleaned_lines.append(line)
|
| 573 |
+
|
| 574 |
+
return ''.join(cleaned_lines)
|
wikimt-x-public.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|