Spaces:
Runtime error
Runtime error
Commit
·
81535ba
1
Parent(s):
900119b
Refactor installation commands and improve helper functions for mesh extraction and rigging pipeline
Browse files
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
import shutil
|
| 2 |
import subprocess
|
| 3 |
import time
|
| 4 |
-
import traceback
|
| 5 |
from pathlib import Path
|
| 6 |
from typing import Tuple
|
| 7 |
|
|
@@ -11,12 +10,7 @@ import spaces
|
|
| 11 |
import torch
|
| 12 |
import yaml
|
| 13 |
|
| 14 |
-
subprocess.run(
|
| 15 |
-
"pip", "install",
|
| 16 |
-
"flash-attn",
|
| 17 |
-
"--no-build-isolation",
|
| 18 |
-
"--find-links", "https://github.com/Dao-AILab/flash-attention/releases"
|
| 19 |
-
], check=True)
|
| 20 |
|
| 21 |
# Get the PyTorch and CUDA versions
|
| 22 |
torch_version = torch.__version__.split("+")[0] # Strips any "+cuXXX" suffix
|
|
@@ -34,426 +28,343 @@ subprocess.run(f'pip install spconv{spconv_version}', shell=True)
|
|
| 34 |
subprocess.run(f'pip install torch_scatter torch_cluster -f https://data.pyg.org/whl/torch-{torch_version}+{cuda_version}.html --no-cache-dir', shell=True)
|
| 35 |
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
self.temp_dir = base_dir / "tmp"
|
| 44 |
-
self.temp_dir.mkdir(exist_ok=True)
|
| 45 |
-
|
| 46 |
-
# Supported file formats
|
| 47 |
-
self.supported_formats = ['.obj', '.fbx', '.glb']
|
| 48 |
-
|
| 49 |
-
def validate_input_file(self, file_path: str) -> bool:
|
| 50 |
-
"""Validate if the input file format is supported."""
|
| 51 |
-
if not file_path or not Path(file_path).exists():
|
| 52 |
-
return False
|
| 53 |
-
|
| 54 |
-
file_ext = Path(file_path).suffix.lower()
|
| 55 |
-
return file_ext in self.supported_formats
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
OPERATION 1: Generate skeleton for the input 3D model using Python
|
| 60 |
-
|
| 61 |
-
Args:
|
| 62 |
-
input_file: Path to the input 3D model file
|
| 63 |
-
seed: Random seed for reproducible results
|
| 64 |
-
|
| 65 |
-
Returns:
|
| 66 |
-
Tuple of (status_message, output_file_path, preview_info)
|
| 67 |
-
"""
|
| 68 |
-
# Validate input
|
| 69 |
-
if not self.validate_input_file(input_file):
|
| 70 |
-
return "Error: Invalid or unsupported file format. Supported: " + ", ".join(self.supported_formats), "", ""
|
| 71 |
-
|
| 72 |
-
# Create working directory
|
| 73 |
-
file_stem = Path(input_file).stem
|
| 74 |
-
input_model_dir = self.temp_dir / f"{file_stem}_{seed}"
|
| 75 |
-
input_model_dir.mkdir(exist_ok=True)
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
# Create extraction parameters
|
| 186 |
-
files = get_files(
|
| 187 |
-
data_name="raw_data.npz",
|
| 188 |
-
inputs=str(input_file),
|
| 189 |
-
input_dataset_dir=None,
|
| 190 |
-
output_dataset_dir=output_dir,
|
| 191 |
-
force_override=True,
|
| 192 |
-
warning=False,
|
| 193 |
-
)
|
| 194 |
-
|
| 195 |
-
if not files:
|
| 196 |
-
raise RuntimeError("No files to extract")
|
| 197 |
-
|
| 198 |
-
# Run the actual extraction
|
| 199 |
-
timestamp = str(int(time.time()))
|
| 200 |
-
extract_builtin(
|
| 201 |
-
output_folder=output_dir,
|
| 202 |
-
target_count=50000,
|
| 203 |
-
num_runs=1,
|
| 204 |
-
id=0,
|
| 205 |
-
time=timestamp,
|
| 206 |
-
files=files,
|
| 207 |
-
)
|
| 208 |
-
|
| 209 |
-
# Return the directory path where raw_data.npz was created
|
| 210 |
-
# The dataset expects to find raw_data.npz in this directory
|
| 211 |
-
expected_npz_dir = files[0][1] # This is the output directory
|
| 212 |
-
expected_npz_file = Path(expected_npz_dir) / "raw_data.npz"
|
| 213 |
-
|
| 214 |
-
if not expected_npz_file.exists():
|
| 215 |
-
raise RuntimeError(f"Extraction failed: {expected_npz_file} not found")
|
| 216 |
-
|
| 217 |
-
return expected_npz_dir # Return the directory containing raw_data.npz
|
| 218 |
-
|
| 219 |
-
def run_skeleton_inference_python(self, input_file: str, output_file: str, seed: int = 12345) -> str:
|
| 220 |
-
"""
|
| 221 |
-
Run skeleton inference using Python (replaces skeleton part of generate_skeleton.sh)
|
| 222 |
-
Returns path to skeleton FBX file
|
| 223 |
-
"""
|
| 224 |
-
from box import Box
|
| 225 |
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
from src.tokenizer.spec import TokenizerConfig
|
| 234 |
-
|
| 235 |
-
# Set random seed
|
| 236 |
-
L.seed_everything(seed, workers=True)
|
| 237 |
-
|
| 238 |
-
# Load task configuration
|
| 239 |
-
task_config_path = "configs/task/quick_inference_skeleton_articulationxl_ar_256.yaml"
|
| 240 |
-
if not Path(task_config_path).exists():
|
| 241 |
-
raise FileNotFoundError(f"Task configuration file not found: {task_config_path}")
|
| 242 |
-
|
| 243 |
-
# Load the task configuration
|
| 244 |
-
with open(task_config_path, 'r') as f:
|
| 245 |
-
task = Box(yaml.safe_load(f))
|
| 246 |
-
|
| 247 |
-
# Create temporary npz directory
|
| 248 |
-
npz_dir = Path(output_file).parent / "npz"
|
| 249 |
-
npz_dir.mkdir(exist_ok=True)
|
| 250 |
-
|
| 251 |
-
# Extract mesh data
|
| 252 |
-
npz_data_dir = self.extract_mesh_python(input_file, npz_dir)
|
| 253 |
-
|
| 254 |
-
# Setup datapath with the directory containing raw_data.npz
|
| 255 |
-
datapath = Datapath(files=[npz_data_dir], cls=None)
|
| 256 |
-
|
| 257 |
-
# Load configurations
|
| 258 |
-
data_config = Box(yaml.safe_load(open("configs/data/quick_inference.yaml", 'r')))
|
| 259 |
-
transform_config = Box(yaml.safe_load(open("configs/transform/inference_ar_transform.yaml", 'r')))
|
| 260 |
-
|
| 261 |
-
# Get tokenizer
|
| 262 |
-
tokenizer_config = TokenizerConfig.parse(config=Box(yaml.safe_load(open("configs/tokenizer/tokenizer_parts_articulationxl_256.yaml", 'r'))))
|
| 263 |
-
tokenizer = get_tokenizer(config=tokenizer_config)
|
| 264 |
-
|
| 265 |
-
# Get model
|
| 266 |
-
model_config = Box(yaml.safe_load(open("configs/model/unirig_ar_350m_1024_81920_float32.yaml", 'r')))
|
| 267 |
-
model = get_model(tokenizer=tokenizer, **model_config)
|
| 268 |
-
|
| 269 |
-
# Setup datasets and transforms
|
| 270 |
-
predict_dataset_config = DatasetConfig.parse(config=data_config.predict_dataset_config).split_by_cls()
|
| 271 |
-
predict_transform_config = TransformConfig.parse(config=transform_config.predict_transform_config)
|
| 272 |
-
|
| 273 |
-
# Create data module
|
| 274 |
-
data = UniRigDatasetModule(
|
| 275 |
-
process_fn=model._process_fn,
|
| 276 |
-
predict_dataset_config=predict_dataset_config,
|
| 277 |
-
predict_transform_config=predict_transform_config,
|
| 278 |
-
tokenizer_config=tokenizer_config,
|
| 279 |
-
debug=False,
|
| 280 |
-
data_name="raw_data.npz",
|
| 281 |
-
datapath=datapath,
|
| 282 |
-
cls=None,
|
| 283 |
-
)
|
| 284 |
-
|
| 285 |
-
# Setup callbacks and writer
|
| 286 |
-
callbacks = []
|
| 287 |
-
writer_config = task.writer.copy()
|
| 288 |
-
writer_config['npz_dir'] = str(npz_dir)
|
| 289 |
-
writer_config['output_dir'] = str(Path(output_file).parent)
|
| 290 |
-
writer_config['output_name'] = Path(output_file).name
|
| 291 |
-
writer_config['user_mode'] = False # Set to False to enable NPZ export
|
| 292 |
-
print(f"Writer config: {writer_config}")
|
| 293 |
-
# But we want the FBX to go to our specified location when in user mode for FBX
|
| 294 |
-
callbacks.append(get_writer(**writer_config, order_config=predict_transform_config.order_config))
|
| 295 |
-
|
| 296 |
-
# Get system
|
| 297 |
-
system_config = Box(yaml.safe_load(open("configs/system/ar_inference_articulationxl.yaml", 'r')))
|
| 298 |
-
system = get_system(**system_config, model=model, steps_per_epoch=1)
|
| 299 |
-
|
| 300 |
-
# Setup trainer
|
| 301 |
-
trainer_config = task.trainer
|
| 302 |
-
resume_from_checkpoint = download(task.resume_from_checkpoint)
|
| 303 |
-
|
| 304 |
-
trainer = L.Trainer(callbacks=callbacks, logger=None, **trainer_config)
|
| 305 |
-
|
| 306 |
-
# Run prediction
|
| 307 |
-
trainer.predict(system, datamodule=data, ckpt_path=resume_from_checkpoint, return_predictions=False)
|
| 308 |
-
|
| 309 |
-
# The actual output file will be in a subdirectory named after the input file
|
| 310 |
-
# Look for the generated skeleton.fbx file
|
| 311 |
-
input_name_stem = Path(input_file).stem
|
| 312 |
-
actual_output_dir = Path(output_file).parent / input_name_stem
|
| 313 |
-
actual_output_file = actual_output_dir / "skeleton.fbx"
|
| 314 |
-
|
| 315 |
-
if not actual_output_file.exists():
|
| 316 |
-
# Try alternative locations - look for any skeleton.fbx file in the output directory
|
| 317 |
-
alt_files = list(Path(output_file).parent.rglob("skeleton.fbx"))
|
| 318 |
-
if alt_files:
|
| 319 |
-
actual_output_file = alt_files[0]
|
| 320 |
-
print(f"Found skeleton at alternative location: {actual_output_file}")
|
| 321 |
-
else:
|
| 322 |
-
# List all files for debugging
|
| 323 |
-
all_files = list(Path(output_file).parent.rglob("*"))
|
| 324 |
-
print(f"Available files: {[str(f) for f in all_files]}")
|
| 325 |
-
raise RuntimeError(f"Skeleton FBX file not found. Expected at: {actual_output_file}")
|
| 326 |
-
|
| 327 |
-
# Copy to the expected output location
|
| 328 |
-
if actual_output_file != Path(output_file):
|
| 329 |
-
shutil.copy2(actual_output_file, output_file)
|
| 330 |
-
print(f"Copied skeleton from {actual_output_file} to {output_file}")
|
| 331 |
-
|
| 332 |
-
print(f"Generated skeleton at: {output_file}")
|
| 333 |
-
return str(output_file)
|
| 334 |
-
|
| 335 |
-
def run_skin_inference_python(self, skeleton_file: str, output_file: str) -> str:
|
| 336 |
-
"""
|
| 337 |
-
Run skin inference using Python (replaces skin part of generate_skin.sh)
|
| 338 |
-
Returns path to skin FBX file
|
| 339 |
-
"""
|
| 340 |
-
from box import Box
|
| 341 |
|
| 342 |
-
|
| 343 |
-
from src.data.dataset import DatasetConfig, UniRigDatasetModule
|
| 344 |
-
from src.data.transform import TransformConfig
|
| 345 |
-
from src.inference.download import download
|
| 346 |
-
from src.model.parse import get_model
|
| 347 |
-
from src.system.parse import get_system, get_writer
|
| 348 |
-
|
| 349 |
-
# Load task configuration
|
| 350 |
-
task_config_path = "configs/task/quick_inference_unirig_skin.yaml"
|
| 351 |
-
with open(task_config_path, 'r') as f:
|
| 352 |
-
task = Box(yaml.safe_load(f))
|
| 353 |
-
|
| 354 |
-
# Look for files matching predict_skeleton.npz pattern recursively
|
| 355 |
-
skeleton_work_dir = Path(skeleton_file).parent
|
| 356 |
-
all_npz_files = list(skeleton_work_dir.rglob("**/*.npz"))
|
| 357 |
-
|
| 358 |
-
# Setup datapath - need to pass the directory containing the NPZ file
|
| 359 |
-
skeleton_npz_dir = all_npz_files[0].parent
|
| 360 |
-
datapath = Datapath(files=[str(skeleton_npz_dir)], cls=None)
|
| 361 |
-
|
| 362 |
-
# Load configurations
|
| 363 |
-
data_config = Box(yaml.safe_load(open("configs/data/quick_inference.yaml", 'r')))
|
| 364 |
-
transform_config = Box(yaml.safe_load(open("configs/transform/inference_skin_transform.yaml", 'r')))
|
| 365 |
-
|
| 366 |
-
# Get model
|
| 367 |
-
model_config = Box(yaml.safe_load(open("configs/model/unirig_skin.yaml", 'r')))
|
| 368 |
-
model = get_model(tokenizer=None, **model_config)
|
| 369 |
-
|
| 370 |
-
# Setup datasets and transforms
|
| 371 |
-
predict_dataset_config = DatasetConfig.parse(config=data_config.predict_dataset_config).split_by_cls()
|
| 372 |
-
predict_transform_config = TransformConfig.parse(config=transform_config.predict_transform_config)
|
| 373 |
-
|
| 374 |
-
# Create data module
|
| 375 |
-
data = UniRigDatasetModule(
|
| 376 |
-
process_fn=model._process_fn,
|
| 377 |
-
predict_dataset_config=predict_dataset_config,
|
| 378 |
-
predict_transform_config=predict_transform_config,
|
| 379 |
-
tokenizer_config=None,
|
| 380 |
-
debug=False,
|
| 381 |
-
data_name="predict_skeleton.npz",
|
| 382 |
-
datapath=datapath,
|
| 383 |
-
cls=None,
|
| 384 |
-
)
|
| 385 |
-
|
| 386 |
-
# Setup callbacks and writer
|
| 387 |
-
callbacks = []
|
| 388 |
-
writer_config = task.writer.copy()
|
| 389 |
-
writer_config['npz_dir'] = str(skeleton_npz_dir)
|
| 390 |
-
writer_config['output_name'] = str(output_file)
|
| 391 |
-
writer_config['user_mode'] = True
|
| 392 |
-
writer_config['export_fbx'] = True # Enable FBX export
|
| 393 |
-
callbacks.append(get_writer(**writer_config, order_config=predict_transform_config.order_config))
|
| 394 |
-
|
| 395 |
-
# Get system
|
| 396 |
-
system_config = Box(yaml.safe_load(open("configs/system/skin.yaml", 'r')))
|
| 397 |
-
system = get_system(**system_config, model=model, steps_per_epoch=1)
|
| 398 |
-
|
| 399 |
-
# Setup trainer
|
| 400 |
-
trainer_config = task.trainer
|
| 401 |
-
resume_from_checkpoint = download(task.resume_from_checkpoint)
|
| 402 |
-
|
| 403 |
-
trainer = L.Trainer(callbacks=callbacks, logger=None, **trainer_config)
|
| 404 |
-
|
| 405 |
-
# Run prediction
|
| 406 |
-
trainer.predict(system, datamodule=data, ckpt_path=resume_from_checkpoint, return_predictions=False)
|
| 407 |
-
|
| 408 |
-
# The skin FBX file should be generated with the specified output name
|
| 409 |
-
# Since user_mode is True and export_fbx is True, it should create the file directly
|
| 410 |
-
if not Path(output_file).exists():
|
| 411 |
-
# Look for generated skin FBX files in the output directory
|
| 412 |
-
skin_files = list(Path(output_file).parent.rglob("*skin*.fbx"))
|
| 413 |
-
if skin_files:
|
| 414 |
-
actual_output_file = skin_files[0]
|
| 415 |
-
# Copy/move to the expected location
|
| 416 |
-
shutil.copy2(actual_output_file, output_file)
|
| 417 |
-
else:
|
| 418 |
-
raise RuntimeError(f"Skin FBX file not found. Expected at: {output_file}")
|
| 419 |
-
|
| 420 |
-
return str(output_file)
|
| 421 |
-
|
| 422 |
-
def merge_results_python(self, source_file: str, target_file: str, output_file: str) -> str:
|
| 423 |
-
"""
|
| 424 |
-
Merge results using Python (replaces merge.sh)
|
| 425 |
-
Returns path to merged file
|
| 426 |
-
"""
|
| 427 |
-
from src.inference.merge import transfer
|
| 428 |
-
|
| 429 |
-
# Validate input paths
|
| 430 |
-
if not Path(source_file).exists():
|
| 431 |
-
raise ValueError(f"Source file does not exist: {source_file}")
|
| 432 |
-
if not Path(target_file).exists():
|
| 433 |
-
raise ValueError(f"Target file does not exist: {target_file}")
|
| 434 |
-
|
| 435 |
-
# Ensure output directory exists
|
| 436 |
-
output_path = Path(output_file)
|
| 437 |
-
output_path.parent.mkdir(parents=True, exist_ok=True)
|
| 438 |
-
|
| 439 |
-
# Use the transfer function directly
|
| 440 |
-
transfer(source=str(source_file), target=str(target_file), output=str(output_path), add_root=False)
|
| 441 |
-
|
| 442 |
-
# Validate that the output file was created and is a valid file
|
| 443 |
-
if not output_path.exists():
|
| 444 |
-
raise RuntimeError(f"Merge failed: Output file not created at {output_path}")
|
| 445 |
-
|
| 446 |
-
if not output_path.is_file():
|
| 447 |
-
raise RuntimeError(f"Merge failed: Output path is not a valid file: {output_path}")
|
| 448 |
-
|
| 449 |
-
return str(output_path.resolve())
|
| 450 |
|
| 451 |
|
| 452 |
def create_app():
|
| 453 |
"""Create and configure the Gradio interface."""
|
| 454 |
|
| 455 |
-
demo_instance = UniRigDemo()
|
| 456 |
-
|
| 457 |
with gr.Blocks(title="UniRig - 3D Model Rigging Demo") as interface:
|
| 458 |
|
| 459 |
# Header
|
|
@@ -502,7 +413,7 @@ def create_app():
|
|
| 502 |
)
|
| 503 |
|
| 504 |
pipeline_btn.click(
|
| 505 |
-
fn=
|
| 506 |
inputs=[input_3d_model, seed],
|
| 507 |
outputs=[pipeline_skeleton_out, files_to_download]
|
| 508 |
)
|
|
|
|
| 1 |
import shutil
|
| 2 |
import subprocess
|
| 3 |
import time
|
|
|
|
| 4 |
from pathlib import Path
|
| 5 |
from typing import Tuple
|
| 6 |
|
|
|
|
| 10 |
import torch
|
| 11 |
import yaml
|
| 12 |
|
| 13 |
+
subprocess.run('pip install flash-attn --no-build-isolation', shell=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Get the PyTorch and CUDA versions
|
| 16 |
torch_version = torch.__version__.split("+")[0] # Strips any "+cuXXX" suffix
|
|
|
|
| 28 |
subprocess.run(f'pip install torch_scatter torch_cluster -f https://data.pyg.org/whl/torch-{torch_version}+{cuda_version}.html --no-cache-dir', shell=True)
|
| 29 |
|
| 30 |
|
| 31 |
+
# Helper functions
|
| 32 |
+
def validate_input_file(file_path: str) -> bool:
|
| 33 |
+
"""Validate if the input file format is supported."""
|
| 34 |
+
supported_formats = ['.obj', '.fbx', '.glb']
|
| 35 |
+
if not file_path or not Path(file_path).exists():
|
| 36 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
file_ext = Path(file_path).suffix.lower()
|
| 39 |
+
return file_ext in supported_formats
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
def extract_mesh_python(input_file: str, output_dir: str) -> str:
|
| 42 |
+
"""
|
| 43 |
+
Extract mesh data from 3D model using Python (replaces extract.sh)
|
| 44 |
+
Returns path to generated .npz file
|
| 45 |
+
"""
|
| 46 |
+
# Import required modules
|
| 47 |
+
from src.data.extract import get_files, extract_builtin
|
| 48 |
+
|
| 49 |
+
# Create extraction parameters
|
| 50 |
+
files = get_files(
|
| 51 |
+
data_name="raw_data.npz",
|
| 52 |
+
inputs=str(input_file),
|
| 53 |
+
input_dataset_dir=None,
|
| 54 |
+
output_dataset_dir=output_dir,
|
| 55 |
+
force_override=True,
|
| 56 |
+
warning=False,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
if not files:
|
| 60 |
+
raise RuntimeError("No files to extract")
|
| 61 |
+
|
| 62 |
+
# Run the actual extraction
|
| 63 |
+
timestamp = str(int(time.time()))
|
| 64 |
+
extract_builtin(
|
| 65 |
+
output_folder=output_dir,
|
| 66 |
+
target_count=50000,
|
| 67 |
+
num_runs=1,
|
| 68 |
+
id=0,
|
| 69 |
+
time=timestamp,
|
| 70 |
+
files=files,
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
# Return the directory path where raw_data.npz was created
|
| 74 |
+
# The dataset expects to find raw_data.npz in this directory
|
| 75 |
+
expected_npz_dir = files[0][1] # This is the output directory
|
| 76 |
+
expected_npz_file = Path(expected_npz_dir) / "raw_data.npz"
|
| 77 |
+
|
| 78 |
+
if not expected_npz_file.exists():
|
| 79 |
+
raise RuntimeError(f"Extraction failed: {expected_npz_file} not found")
|
| 80 |
+
|
| 81 |
+
return expected_npz_dir # Return the directory containing raw_data.npz
|
| 82 |
|
| 83 |
+
def run_skeleton_inference_python(input_file: str, output_file: str, seed: int = 12345) -> str:
|
| 84 |
+
"""
|
| 85 |
+
Run skeleton inference using Python (replaces skeleton part of generate_skeleton.sh)
|
| 86 |
+
Returns path to skeleton FBX file
|
| 87 |
+
"""
|
| 88 |
+
from box import Box
|
| 89 |
|
| 90 |
+
from src.data.datapath import Datapath
|
| 91 |
+
from src.data.dataset import DatasetConfig, UniRigDatasetModule
|
| 92 |
+
from src.data.transform import TransformConfig
|
| 93 |
+
from src.inference.download import download
|
| 94 |
+
from src.model.parse import get_model
|
| 95 |
+
from src.system.parse import get_system, get_writer
|
| 96 |
+
from src.tokenizer.parse import get_tokenizer
|
| 97 |
+
from src.tokenizer.spec import TokenizerConfig
|
| 98 |
+
|
| 99 |
+
# Set random seed
|
| 100 |
+
L.seed_everything(seed, workers=True)
|
| 101 |
+
|
| 102 |
+
# Load task configuration
|
| 103 |
+
task_config_path = "configs/task/quick_inference_skeleton_articulationxl_ar_256.yaml"
|
| 104 |
+
if not Path(task_config_path).exists():
|
| 105 |
+
raise FileNotFoundError(f"Task configuration file not found: {task_config_path}")
|
| 106 |
+
|
| 107 |
+
# Load the task configuration
|
| 108 |
+
with open(task_config_path, 'r') as f:
|
| 109 |
+
task = Box(yaml.safe_load(f))
|
| 110 |
+
|
| 111 |
+
# Create temporary npz directory
|
| 112 |
+
npz_dir = Path(output_file).parent / "npz"
|
| 113 |
+
npz_dir.mkdir(exist_ok=True)
|
| 114 |
+
|
| 115 |
+
# Extract mesh data
|
| 116 |
+
npz_data_dir = extract_mesh_python(input_file, npz_dir)
|
| 117 |
+
|
| 118 |
+
# Setup datapath with the directory containing raw_data.npz
|
| 119 |
+
datapath = Datapath(files=[npz_data_dir], cls=None)
|
| 120 |
+
|
| 121 |
+
# Load configurations
|
| 122 |
+
data_config = Box(yaml.safe_load(open("configs/data/quick_inference.yaml", 'r')))
|
| 123 |
+
transform_config = Box(yaml.safe_load(open("configs/transform/inference_ar_transform.yaml", 'r')))
|
| 124 |
+
|
| 125 |
+
# Get tokenizer
|
| 126 |
+
tokenizer_config = TokenizerConfig.parse(config=Box(yaml.safe_load(open("configs/tokenizer/tokenizer_parts_articulationxl_256.yaml", 'r'))))
|
| 127 |
+
tokenizer = get_tokenizer(config=tokenizer_config)
|
| 128 |
+
|
| 129 |
+
# Get model
|
| 130 |
+
model_config = Box(yaml.safe_load(open("configs/model/unirig_ar_350m_1024_81920_float32.yaml", 'r')))
|
| 131 |
+
model = get_model(tokenizer=tokenizer, **model_config)
|
| 132 |
+
|
| 133 |
+
# Setup datasets and transforms
|
| 134 |
+
predict_dataset_config = DatasetConfig.parse(config=data_config.predict_dataset_config).split_by_cls()
|
| 135 |
+
predict_transform_config = TransformConfig.parse(config=transform_config.predict_transform_config)
|
| 136 |
+
|
| 137 |
+
# Create data module
|
| 138 |
+
data = UniRigDatasetModule(
|
| 139 |
+
process_fn=model._process_fn,
|
| 140 |
+
predict_dataset_config=predict_dataset_config,
|
| 141 |
+
predict_transform_config=predict_transform_config,
|
| 142 |
+
tokenizer_config=tokenizer_config,
|
| 143 |
+
debug=False,
|
| 144 |
+
data_name="raw_data.npz",
|
| 145 |
+
datapath=datapath,
|
| 146 |
+
cls=None,
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
# Setup callbacks and writer
|
| 150 |
+
callbacks = []
|
| 151 |
+
writer_config = task.writer.copy()
|
| 152 |
+
writer_config['npz_dir'] = str(npz_dir)
|
| 153 |
+
writer_config['output_dir'] = str(Path(output_file).parent)
|
| 154 |
+
writer_config['output_name'] = Path(output_file).name
|
| 155 |
+
writer_config['user_mode'] = False # Set to False to enable NPZ export
|
| 156 |
+
print(f"Writer config: {writer_config}")
|
| 157 |
+
# But we want the FBX to go to our specified location when in user mode for FBX
|
| 158 |
+
callbacks.append(get_writer(**writer_config, order_config=predict_transform_config.order_config))
|
| 159 |
+
|
| 160 |
+
# Get system
|
| 161 |
+
system_config = Box(yaml.safe_load(open("configs/system/ar_inference_articulationxl.yaml", 'r')))
|
| 162 |
+
system = get_system(**system_config, model=model, steps_per_epoch=1)
|
| 163 |
+
|
| 164 |
+
# Setup trainer
|
| 165 |
+
trainer_config = task.trainer
|
| 166 |
+
resume_from_checkpoint = download(task.resume_from_checkpoint)
|
| 167 |
+
|
| 168 |
+
trainer = L.Trainer(callbacks=callbacks, logger=None, **trainer_config)
|
| 169 |
+
|
| 170 |
+
# Run prediction
|
| 171 |
+
trainer.predict(system, datamodule=data, ckpt_path=resume_from_checkpoint, return_predictions=False)
|
| 172 |
+
|
| 173 |
+
# The actual output file will be in a subdirectory named after the input file
|
| 174 |
+
# Look for the generated skeleton.fbx file
|
| 175 |
+
input_name_stem = Path(input_file).stem
|
| 176 |
+
actual_output_dir = Path(output_file).parent / input_name_stem
|
| 177 |
+
actual_output_file = actual_output_dir / "skeleton.fbx"
|
| 178 |
+
|
| 179 |
+
if not actual_output_file.exists():
|
| 180 |
+
# Try alternative locations - look for any skeleton.fbx file in the output directory
|
| 181 |
+
alt_files = list(Path(output_file).parent.rglob("skeleton.fbx"))
|
| 182 |
+
if alt_files:
|
| 183 |
+
actual_output_file = alt_files[0]
|
| 184 |
+
print(f"Found skeleton at alternative location: {actual_output_file}")
|
| 185 |
+
else:
|
| 186 |
+
# List all files for debugging
|
| 187 |
+
all_files = list(Path(output_file).parent.rglob("*"))
|
| 188 |
+
print(f"Available files: {[str(f) for f in all_files]}")
|
| 189 |
+
raise RuntimeError(f"Skeleton FBX file not found. Expected at: {actual_output_file}")
|
| 190 |
+
|
| 191 |
+
# Copy to the expected output location
|
| 192 |
+
if actual_output_file != Path(output_file):
|
| 193 |
+
shutil.copy2(actual_output_file, output_file)
|
| 194 |
+
print(f"Copied skeleton from {actual_output_file} to {output_file}")
|
| 195 |
+
|
| 196 |
+
print(f"Generated skeleton at: {output_file}")
|
| 197 |
+
return str(output_file)
|
| 198 |
|
| 199 |
+
def run_skin_inference_python(skeleton_file: str, output_file: str) -> str:
|
| 200 |
+
"""
|
| 201 |
+
Run skin inference using Python (replaces skin part of generate_skin.sh)
|
| 202 |
+
Returns path to skin FBX file
|
| 203 |
+
"""
|
| 204 |
+
from box import Box
|
| 205 |
+
|
| 206 |
+
from src.data.datapath import Datapath
|
| 207 |
+
from src.data.dataset import DatasetConfig, UniRigDatasetModule
|
| 208 |
+
from src.data.transform import TransformConfig
|
| 209 |
+
from src.inference.download import download
|
| 210 |
+
from src.model.parse import get_model
|
| 211 |
+
from src.system.parse import get_system, get_writer
|
| 212 |
+
|
| 213 |
+
# Load task configuration
|
| 214 |
+
task_config_path = "configs/task/quick_inference_unirig_skin.yaml"
|
| 215 |
+
with open(task_config_path, 'r') as f:
|
| 216 |
+
task = Box(yaml.safe_load(f))
|
| 217 |
|
| 218 |
+
# Look for files matching predict_skeleton.npz pattern recursively
|
| 219 |
+
skeleton_work_dir = Path(skeleton_file).parent
|
| 220 |
+
all_npz_files = list(skeleton_work_dir.rglob("**/*.npz"))
|
| 221 |
+
|
| 222 |
+
# Setup datapath - need to pass the directory containing the NPZ file
|
| 223 |
+
skeleton_npz_dir = all_npz_files[0].parent
|
| 224 |
+
datapath = Datapath(files=[str(skeleton_npz_dir)], cls=None)
|
| 225 |
+
|
| 226 |
+
# Load configurations
|
| 227 |
+
data_config = Box(yaml.safe_load(open("configs/data/quick_inference.yaml", 'r')))
|
| 228 |
+
transform_config = Box(yaml.safe_load(open("configs/transform/inference_skin_transform.yaml", 'r')))
|
| 229 |
+
|
| 230 |
+
# Get model
|
| 231 |
+
model_config = Box(yaml.safe_load(open("configs/model/unirig_skin.yaml", 'r')))
|
| 232 |
+
model = get_model(tokenizer=None, **model_config)
|
| 233 |
+
|
| 234 |
+
# Setup datasets and transforms
|
| 235 |
+
predict_dataset_config = DatasetConfig.parse(config=data_config.predict_dataset_config).split_by_cls()
|
| 236 |
+
predict_transform_config = TransformConfig.parse(config=transform_config.predict_transform_config)
|
| 237 |
+
|
| 238 |
+
# Create data module
|
| 239 |
+
data = UniRigDatasetModule(
|
| 240 |
+
process_fn=model._process_fn,
|
| 241 |
+
predict_dataset_config=predict_dataset_config,
|
| 242 |
+
predict_transform_config=predict_transform_config,
|
| 243 |
+
tokenizer_config=None,
|
| 244 |
+
debug=False,
|
| 245 |
+
data_name="predict_skeleton.npz",
|
| 246 |
+
datapath=datapath,
|
| 247 |
+
cls=None,
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
# Setup callbacks and writer
|
| 251 |
+
callbacks = []
|
| 252 |
+
writer_config = task.writer.copy()
|
| 253 |
+
writer_config['npz_dir'] = str(skeleton_npz_dir)
|
| 254 |
+
writer_config['output_name'] = str(output_file)
|
| 255 |
+
writer_config['user_mode'] = True
|
| 256 |
+
writer_config['export_fbx'] = True # Enable FBX export
|
| 257 |
+
callbacks.append(get_writer(**writer_config, order_config=predict_transform_config.order_config))
|
| 258 |
+
|
| 259 |
+
# Get system
|
| 260 |
+
system_config = Box(yaml.safe_load(open("configs/system/skin.yaml", 'r')))
|
| 261 |
+
system = get_system(**system_config, model=model, steps_per_epoch=1)
|
| 262 |
+
|
| 263 |
+
# Setup trainer
|
| 264 |
+
trainer_config = task.trainer
|
| 265 |
+
resume_from_checkpoint = download(task.resume_from_checkpoint)
|
| 266 |
+
|
| 267 |
+
trainer = L.Trainer(callbacks=callbacks, logger=None, **trainer_config)
|
| 268 |
+
|
| 269 |
+
# Run prediction
|
| 270 |
+
trainer.predict(system, datamodule=data, ckpt_path=resume_from_checkpoint, return_predictions=False)
|
| 271 |
+
|
| 272 |
+
# The skin FBX file should be generated with the specified output name
|
| 273 |
+
# Since user_mode is True and export_fbx is True, it should create the file directly
|
| 274 |
+
if not Path(output_file).exists():
|
| 275 |
+
# Look for generated skin FBX files in the output directory
|
| 276 |
+
skin_files = list(Path(output_file).parent.rglob("*skin*.fbx"))
|
| 277 |
+
if skin_files:
|
| 278 |
+
actual_output_file = skin_files[0]
|
| 279 |
+
# Copy/move to the expected location
|
| 280 |
+
shutil.copy2(actual_output_file, output_file)
|
| 281 |
+
else:
|
| 282 |
+
raise RuntimeError(f"Skin FBX file not found. Expected at: {output_file}")
|
| 283 |
+
|
| 284 |
+
return str(output_file)
|
| 285 |
|
| 286 |
+
def merge_results_python(source_file: str, target_file: str, output_file: str) -> str:
|
| 287 |
+
"""
|
| 288 |
+
Merge results using Python (replaces merge.sh)
|
| 289 |
+
Returns path to merged file
|
| 290 |
+
"""
|
| 291 |
+
from src.inference.merge import transfer
|
| 292 |
+
|
| 293 |
+
# Validate input paths
|
| 294 |
+
if not Path(source_file).exists():
|
| 295 |
+
raise ValueError(f"Source file does not exist: {source_file}")
|
| 296 |
+
if not Path(target_file).exists():
|
| 297 |
+
raise ValueError(f"Target file does not exist: {target_file}")
|
| 298 |
+
|
| 299 |
+
# Ensure output directory exists
|
| 300 |
+
output_path = Path(output_file)
|
| 301 |
+
output_path.parent.mkdir(parents=True, exist_ok=True)
|
| 302 |
+
|
| 303 |
+
# Use the transfer function directly
|
| 304 |
+
transfer(source=str(source_file), target=str(target_file), output=str(output_path), add_root=False)
|
| 305 |
+
|
| 306 |
+
# Validate that the output file was created and is a valid file
|
| 307 |
+
if not output_path.exists():
|
| 308 |
+
raise RuntimeError(f"Merge failed: Output file not created at {output_path}")
|
| 309 |
+
|
| 310 |
+
if not output_path.is_file():
|
| 311 |
+
raise RuntimeError(f"Merge failed: Output path is not a valid file: {output_path}")
|
| 312 |
+
|
| 313 |
+
return str(output_path.resolve())
|
| 314 |
|
| 315 |
+
@spaces.GPU()
|
| 316 |
+
def complete_pipeline(input_file: str, seed: int = 12345) -> Tuple[str, list]:
|
| 317 |
+
"""
|
| 318 |
+
Run the complete rigging pipeline: skeleton generation → skinning → merge.
|
| 319 |
+
|
| 320 |
+
Args:
|
| 321 |
+
input_file: Path to the input 3D model file
|
| 322 |
+
seed: Random seed for reproducible results
|
| 323 |
+
|
| 324 |
+
Returns:
|
| 325 |
+
Tuple of (final_file_path, list_of_intermediate_files)
|
| 326 |
+
"""
|
| 327 |
+
# Create temp directory
|
| 328 |
+
base_dir = Path(__file__).parent
|
| 329 |
+
temp_dir = base_dir / "tmp"
|
| 330 |
+
temp_dir.mkdir(exist_ok=True)
|
| 331 |
+
|
| 332 |
+
# Supported file formats
|
| 333 |
+
supported_formats = ['.obj', '.fbx', '.glb']
|
| 334 |
+
|
| 335 |
+
# Validate input file
|
| 336 |
+
if not validate_input_file(input_file):
|
| 337 |
+
raise gr.Error(f"Error: Invalid or unsupported file format. Supported formats: {', '.join(supported_formats)}")
|
| 338 |
+
|
| 339 |
+
# Create working directory
|
| 340 |
+
file_stem = Path(input_file).stem
|
| 341 |
+
input_model_dir = temp_dir / f"{file_stem}_{seed}"
|
| 342 |
+
input_model_dir.mkdir(exist_ok=True)
|
| 343 |
|
| 344 |
+
# Copy input file to working directory
|
| 345 |
+
input_file = Path(input_file)
|
| 346 |
+
shutil.copy2(input_file, input_model_dir / input_file.name)
|
| 347 |
+
input_file = input_model_dir / input_file.name
|
| 348 |
+
print(f"New input file path: {input_file}")
|
| 349 |
+
|
| 350 |
+
# Step 1: Generate skeleton
|
| 351 |
+
output_skeleton_file = input_model_dir / f"{file_stem}_skeleton.fbx"
|
| 352 |
+
run_skeleton_inference_python(input_file, output_skeleton_file, seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
|
| 354 |
+
# Step 2: Generate skinning
|
| 355 |
+
output_skin_file = input_model_dir / f"{file_stem}_skin.fbx"
|
| 356 |
+
run_skin_inference_python(output_skeleton_file, output_skin_file)
|
| 357 |
+
|
| 358 |
+
# Step 3: Merge results
|
| 359 |
+
final_file = input_model_dir / f"{file_stem}_rigged.glb"
|
| 360 |
+
merge_results_python(output_skin_file, input_file, final_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
|
| 362 |
+
return str(final_file), [str(output_skeleton_file), str(output_skin_file), str(final_file)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
|
| 364 |
|
| 365 |
def create_app():
|
| 366 |
"""Create and configure the Gradio interface."""
|
| 367 |
|
|
|
|
|
|
|
| 368 |
with gr.Blocks(title="UniRig - 3D Model Rigging Demo") as interface:
|
| 369 |
|
| 370 |
# Header
|
|
|
|
| 413 |
)
|
| 414 |
|
| 415 |
pipeline_btn.click(
|
| 416 |
+
fn=complete_pipeline,
|
| 417 |
inputs=[input_3d_model, seed],
|
| 418 |
outputs=[pipeline_skeleton_out, files_to_download]
|
| 419 |
)
|