Spaces:
Running
Running
| # Ultralytics π AGPL-3.0 License - https://ultralytics.com/license | |
| # -------------------------------------------------------- | |
| # TinyViT Model Architecture | |
| # Copyright (c) 2022 Microsoft | |
| # Adapted from LeViT and Swin Transformer | |
| # LeViT: (https://github.com/facebookresearch/levit) | |
| # Swin: (https://github.com/microsoft/swin-transformer) | |
| # Build the TinyViT Model | |
| # -------------------------------------------------------- | |
| import itertools | |
| from typing import Tuple | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint as checkpoint | |
| from ultralytics.nn.modules import LayerNorm2d | |
| from ultralytics.utils.instance import to_2tuple | |
| class Conv2d_BN(torch.nn.Sequential): | |
| """ | |
| A sequential container that performs 2D convolution followed by batch normalization. | |
| Attributes: | |
| c (torch.nn.Conv2d): 2D convolution layer. | |
| 1 (torch.nn.BatchNorm2d): Batch normalization layer. | |
| Methods: | |
| __init__: Initializes the Conv2d_BN with specified parameters. | |
| Args: | |
| a (int): Number of input channels. | |
| b (int): Number of output channels. | |
| ks (int): Kernel size for the convolution. Defaults to 1. | |
| stride (int): Stride for the convolution. Defaults to 1. | |
| pad (int): Padding for the convolution. Defaults to 0. | |
| dilation (int): Dilation factor for the convolution. Defaults to 1. | |
| groups (int): Number of groups for the convolution. Defaults to 1. | |
| bn_weight_init (float): Initial value for batch normalization weight. Defaults to 1. | |
| Examples: | |
| >>> conv_bn = Conv2d_BN(3, 64, ks=3, stride=1, pad=1) | |
| >>> input_tensor = torch.randn(1, 3, 224, 224) | |
| >>> output = conv_bn(input_tensor) | |
| >>> print(output.shape) | |
| """ | |
| def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1): | |
| """Initializes a sequential container with 2D convolution followed by batch normalization.""" | |
| super().__init__() | |
| self.add_module("c", torch.nn.Conv2d(a, b, ks, stride, pad, dilation, groups, bias=False)) | |
| bn = torch.nn.BatchNorm2d(b) | |
| torch.nn.init.constant_(bn.weight, bn_weight_init) | |
| torch.nn.init.constant_(bn.bias, 0) | |
| self.add_module("bn", bn) | |
| class PatchEmbed(nn.Module): | |
| """ | |
| Embeds images into patches and projects them into a specified embedding dimension. | |
| Attributes: | |
| patches_resolution (Tuple[int, int]): Resolution of the patches after embedding. | |
| num_patches (int): Total number of patches. | |
| in_chans (int): Number of input channels. | |
| embed_dim (int): Dimension of the embedding. | |
| seq (nn.Sequential): Sequence of convolutional and activation layers for patch embedding. | |
| Methods: | |
| forward: Processes the input tensor through the patch embedding sequence. | |
| Examples: | |
| >>> import torch | |
| >>> patch_embed = PatchEmbed(in_chans=3, embed_dim=96, resolution=224, activation=nn.GELU) | |
| >>> x = torch.randn(1, 3, 224, 224) | |
| >>> output = patch_embed(x) | |
| >>> print(output.shape) | |
| """ | |
| def __init__(self, in_chans, embed_dim, resolution, activation): | |
| """Initializes patch embedding with convolutional layers for image-to-patch conversion and projection.""" | |
| super().__init__() | |
| img_size: Tuple[int, int] = to_2tuple(resolution) | |
| self.patches_resolution = (img_size[0] // 4, img_size[1] // 4) | |
| self.num_patches = self.patches_resolution[0] * self.patches_resolution[1] | |
| self.in_chans = in_chans | |
| self.embed_dim = embed_dim | |
| n = embed_dim | |
| self.seq = nn.Sequential( | |
| Conv2d_BN(in_chans, n // 2, 3, 2, 1), | |
| activation(), | |
| Conv2d_BN(n // 2, n, 3, 2, 1), | |
| ) | |
| def forward(self, x): | |
| """Processes input tensor through patch embedding sequence, converting images to patch embeddings.""" | |
| return self.seq(x) | |
| class MBConv(nn.Module): | |
| """ | |
| Mobile Inverted Bottleneck Conv (MBConv) layer, part of the EfficientNet architecture. | |
| Attributes: | |
| in_chans (int): Number of input channels. | |
| hidden_chans (int): Number of hidden channels. | |
| out_chans (int): Number of output channels. | |
| conv1 (Conv2d_BN): First convolutional layer. | |
| act1 (nn.Module): First activation function. | |
| conv2 (Conv2d_BN): Depthwise convolutional layer. | |
| act2 (nn.Module): Second activation function. | |
| conv3 (Conv2d_BN): Final convolutional layer. | |
| act3 (nn.Module): Third activation function. | |
| drop_path (nn.Module): Drop path layer (Identity for inference). | |
| Methods: | |
| forward: Performs the forward pass through the MBConv layer. | |
| Examples: | |
| >>> in_chans, out_chans = 32, 64 | |
| >>> mbconv = MBConv(in_chans, out_chans, expand_ratio=4, activation=nn.ReLU, drop_path=0.1) | |
| >>> x = torch.randn(1, in_chans, 56, 56) | |
| >>> output = mbconv(x) | |
| >>> print(output.shape) | |
| torch.Size([1, 64, 56, 56]) | |
| """ | |
| def __init__(self, in_chans, out_chans, expand_ratio, activation, drop_path): | |
| """Initializes the MBConv layer with specified input/output channels, expansion ratio, and activation.""" | |
| super().__init__() | |
| self.in_chans = in_chans | |
| self.hidden_chans = int(in_chans * expand_ratio) | |
| self.out_chans = out_chans | |
| self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1) | |
| self.act1 = activation() | |
| self.conv2 = Conv2d_BN(self.hidden_chans, self.hidden_chans, ks=3, stride=1, pad=1, groups=self.hidden_chans) | |
| self.act2 = activation() | |
| self.conv3 = Conv2d_BN(self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0) | |
| self.act3 = activation() | |
| # NOTE: `DropPath` is needed only for training. | |
| # self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.drop_path = nn.Identity() | |
| def forward(self, x): | |
| """Implements the forward pass of MBConv, applying convolutions and skip connection.""" | |
| shortcut = x | |
| x = self.conv1(x) | |
| x = self.act1(x) | |
| x = self.conv2(x) | |
| x = self.act2(x) | |
| x = self.conv3(x) | |
| x = self.drop_path(x) | |
| x += shortcut | |
| return self.act3(x) | |
| class PatchMerging(nn.Module): | |
| """ | |
| Merges neighboring patches in the feature map and projects to a new dimension. | |
| This class implements a patch merging operation that combines spatial information and adjusts the feature | |
| dimension. It uses a series of convolutional layers with batch normalization to achieve this. | |
| Attributes: | |
| input_resolution (Tuple[int, int]): The input resolution (height, width) of the feature map. | |
| dim (int): The input dimension of the feature map. | |
| out_dim (int): The output dimension after merging and projection. | |
| act (nn.Module): The activation function used between convolutions. | |
| conv1 (Conv2d_BN): The first convolutional layer for dimension projection. | |
| conv2 (Conv2d_BN): The second convolutional layer for spatial merging. | |
| conv3 (Conv2d_BN): The third convolutional layer for final projection. | |
| Methods: | |
| forward: Applies the patch merging operation to the input tensor. | |
| Examples: | |
| >>> input_resolution = (56, 56) | |
| >>> patch_merging = PatchMerging(input_resolution, dim=64, out_dim=128, activation=nn.ReLU) | |
| >>> x = torch.randn(4, 64, 56, 56) | |
| >>> output = patch_merging(x) | |
| >>> print(output.shape) | |
| """ | |
| def __init__(self, input_resolution, dim, out_dim, activation): | |
| """Initializes the PatchMerging module for merging and projecting neighboring patches in feature maps.""" | |
| super().__init__() | |
| self.input_resolution = input_resolution | |
| self.dim = dim | |
| self.out_dim = out_dim | |
| self.act = activation() | |
| self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0) | |
| stride_c = 1 if out_dim in {320, 448, 576} else 2 | |
| self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim) | |
| self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0) | |
| def forward(self, x): | |
| """Applies patch merging and dimension projection to the input feature map.""" | |
| if x.ndim == 3: | |
| H, W = self.input_resolution | |
| B = len(x) | |
| # (B, C, H, W) | |
| x = x.view(B, H, W, -1).permute(0, 3, 1, 2) | |
| x = self.conv1(x) | |
| x = self.act(x) | |
| x = self.conv2(x) | |
| x = self.act(x) | |
| x = self.conv3(x) | |
| return x.flatten(2).transpose(1, 2) | |
| class ConvLayer(nn.Module): | |
| """ | |
| Convolutional Layer featuring multiple MobileNetV3-style inverted bottleneck convolutions (MBConv). | |
| This layer optionally applies downsample operations to the output and supports gradient checkpointing. | |
| Attributes: | |
| dim (int): Dimensionality of the input and output. | |
| input_resolution (Tuple[int, int]): Resolution of the input image. | |
| depth (int): Number of MBConv layers in the block. | |
| use_checkpoint (bool): Whether to use gradient checkpointing to save memory. | |
| blocks (nn.ModuleList): List of MBConv layers. | |
| downsample (Optional[Callable]): Function for downsampling the output. | |
| Methods: | |
| forward: Processes the input through the convolutional layers. | |
| Examples: | |
| >>> input_tensor = torch.randn(1, 64, 56, 56) | |
| >>> conv_layer = ConvLayer(64, (56, 56), depth=3, activation=nn.ReLU) | |
| >>> output = conv_layer(input_tensor) | |
| >>> print(output.shape) | |
| """ | |
| def __init__( | |
| self, | |
| dim, | |
| input_resolution, | |
| depth, | |
| activation, | |
| drop_path=0.0, | |
| downsample=None, | |
| use_checkpoint=False, | |
| out_dim=None, | |
| conv_expand_ratio=4.0, | |
| ): | |
| """ | |
| Initializes the ConvLayer with the given dimensions and settings. | |
| This layer consists of multiple MobileNetV3-style inverted bottleneck convolutions (MBConv) and | |
| optionally applies downsampling to the output. | |
| Args: | |
| dim (int): The dimensionality of the input and output. | |
| input_resolution (Tuple[int, int]): The resolution of the input image. | |
| depth (int): The number of MBConv layers in the block. | |
| activation (Callable): Activation function applied after each convolution. | |
| drop_path (float | List[float]): Drop path rate. Single float or a list of floats for each MBConv. | |
| downsample (Optional[Callable]): Function for downsampling the output. None to skip downsampling. | |
| use_checkpoint (bool): Whether to use gradient checkpointing to save memory. | |
| out_dim (Optional[int]): The dimensionality of the output. None means it will be the same as `dim`. | |
| conv_expand_ratio (float): Expansion ratio for the MBConv layers. | |
| Examples: | |
| >>> input_tensor = torch.randn(1, 64, 56, 56) | |
| >>> conv_layer = ConvLayer(64, (56, 56), depth=3, activation=nn.ReLU) | |
| >>> output = conv_layer(input_tensor) | |
| >>> print(output.shape) | |
| """ | |
| super().__init__() | |
| self.dim = dim | |
| self.input_resolution = input_resolution | |
| self.depth = depth | |
| self.use_checkpoint = use_checkpoint | |
| # Build blocks | |
| self.blocks = nn.ModuleList( | |
| [ | |
| MBConv( | |
| dim, | |
| dim, | |
| conv_expand_ratio, | |
| activation, | |
| drop_path[i] if isinstance(drop_path, list) else drop_path, | |
| ) | |
| for i in range(depth) | |
| ] | |
| ) | |
| # Patch merging layer | |
| self.downsample = ( | |
| None | |
| if downsample is None | |
| else downsample(input_resolution, dim=dim, out_dim=out_dim, activation=activation) | |
| ) | |
| def forward(self, x): | |
| """Processes input through convolutional layers, applying MBConv blocks and optional downsampling.""" | |
| for blk in self.blocks: | |
| x = checkpoint.checkpoint(blk, x) if self.use_checkpoint else blk(x) | |
| return x if self.downsample is None else self.downsample(x) | |
| class Mlp(nn.Module): | |
| """ | |
| Multi-layer Perceptron (MLP) module for transformer architectures. | |
| This module applies layer normalization, two fully-connected layers with an activation function in between, | |
| and dropout. It is commonly used in transformer-based architectures. | |
| Attributes: | |
| norm (nn.LayerNorm): Layer normalization applied to the input. | |
| fc1 (nn.Linear): First fully-connected layer. | |
| fc2 (nn.Linear): Second fully-connected layer. | |
| act (nn.Module): Activation function applied after the first fully-connected layer. | |
| drop (nn.Dropout): Dropout layer applied after the activation function. | |
| Methods: | |
| forward: Applies the MLP operations on the input tensor. | |
| Examples: | |
| >>> import torch | |
| >>> from torch import nn | |
| >>> mlp = Mlp(in_features=256, hidden_features=512, out_features=256, act_layer=nn.GELU, drop=0.1) | |
| >>> x = torch.randn(32, 100, 256) | |
| >>> output = mlp(x) | |
| >>> print(output.shape) | |
| torch.Size([32, 100, 256]) | |
| """ | |
| def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): | |
| """Initializes a multi-layer perceptron with configurable input, hidden, and output dimensions.""" | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.norm = nn.LayerNorm(in_features) | |
| self.fc1 = nn.Linear(in_features, hidden_features) | |
| self.fc2 = nn.Linear(hidden_features, out_features) | |
| self.act = act_layer() | |
| self.drop = nn.Dropout(drop) | |
| def forward(self, x): | |
| """Applies MLP operations: layer norm, FC layers, activation, and dropout to the input tensor.""" | |
| x = self.norm(x) | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.drop(x) | |
| x = self.fc2(x) | |
| return self.drop(x) | |
| class Attention(torch.nn.Module): | |
| """ | |
| Multi-head attention module with spatial awareness and trainable attention biases. | |
| This module implements a multi-head attention mechanism with support for spatial awareness, applying | |
| attention biases based on spatial resolution. It includes trainable attention biases for each unique | |
| offset between spatial positions in the resolution grid. | |
| Attributes: | |
| num_heads (int): Number of attention heads. | |
| scale (float): Scaling factor for attention scores. | |
| key_dim (int): Dimensionality of the keys and queries. | |
| nh_kd (int): Product of num_heads and key_dim. | |
| d (int): Dimensionality of the value vectors. | |
| dh (int): Product of d and num_heads. | |
| attn_ratio (float): Attention ratio affecting the dimensions of the value vectors. | |
| norm (nn.LayerNorm): Layer normalization applied to input. | |
| qkv (nn.Linear): Linear layer for computing query, key, and value projections. | |
| proj (nn.Linear): Linear layer for final projection. | |
| attention_biases (nn.Parameter): Learnable attention biases. | |
| attention_bias_idxs (Tensor): Indices for attention biases. | |
| ab (Tensor): Cached attention biases for inference, deleted during training. | |
| Methods: | |
| train: Sets the module in training mode and handles the 'ab' attribute. | |
| forward: Performs the forward pass of the attention mechanism. | |
| Examples: | |
| >>> attn = Attention(dim=256, key_dim=64, num_heads=8, resolution=(14, 14)) | |
| >>> x = torch.randn(1, 196, 256) | |
| >>> output = attn(x) | |
| >>> print(output.shape) | |
| torch.Size([1, 196, 256]) | |
| """ | |
| def __init__( | |
| self, | |
| dim, | |
| key_dim, | |
| num_heads=8, | |
| attn_ratio=4, | |
| resolution=(14, 14), | |
| ): | |
| """ | |
| Initializes the Attention module for multi-head attention with spatial awareness. | |
| This module implements a multi-head attention mechanism with support for spatial awareness, applying | |
| attention biases based on spatial resolution. It includes trainable attention biases for each unique | |
| offset between spatial positions in the resolution grid. | |
| Args: | |
| dim (int): The dimensionality of the input and output. | |
| key_dim (int): The dimensionality of the keys and queries. | |
| num_heads (int): Number of attention heads. Default is 8. | |
| attn_ratio (float): Attention ratio, affecting the dimensions of the value vectors. Default is 4. | |
| resolution (Tuple[int, int]): Spatial resolution of the input feature map. Default is (14, 14). | |
| Raises: | |
| AssertionError: If 'resolution' is not a tuple of length 2. | |
| Examples: | |
| >>> attn = Attention(dim=256, key_dim=64, num_heads=8, resolution=(14, 14)) | |
| >>> x = torch.randn(1, 196, 256) | |
| >>> output = attn(x) | |
| >>> print(output.shape) | |
| torch.Size([1, 196, 256]) | |
| """ | |
| super().__init__() | |
| assert isinstance(resolution, tuple) and len(resolution) == 2, "'resolution' argument not tuple of length 2" | |
| self.num_heads = num_heads | |
| self.scale = key_dim**-0.5 | |
| self.key_dim = key_dim | |
| self.nh_kd = nh_kd = key_dim * num_heads | |
| self.d = int(attn_ratio * key_dim) | |
| self.dh = int(attn_ratio * key_dim) * num_heads | |
| self.attn_ratio = attn_ratio | |
| h = self.dh + nh_kd * 2 | |
| self.norm = nn.LayerNorm(dim) | |
| self.qkv = nn.Linear(dim, h) | |
| self.proj = nn.Linear(self.dh, dim) | |
| points = list(itertools.product(range(resolution[0]), range(resolution[1]))) | |
| N = len(points) | |
| attention_offsets = {} | |
| idxs = [] | |
| for p1 in points: | |
| for p2 in points: | |
| offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) | |
| if offset not in attention_offsets: | |
| attention_offsets[offset] = len(attention_offsets) | |
| idxs.append(attention_offsets[offset]) | |
| self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets))) | |
| self.register_buffer("attention_bias_idxs", torch.LongTensor(idxs).view(N, N), persistent=False) | |
| def train(self, mode=True): | |
| """Performs multi-head attention with spatial awareness and trainable attention biases.""" | |
| super().train(mode) | |
| if mode and hasattr(self, "ab"): | |
| del self.ab | |
| else: | |
| self.ab = self.attention_biases[:, self.attention_bias_idxs] | |
| def forward(self, x): # x | |
| """Applies multi-head attention with spatial awareness and trainable attention biases.""" | |
| B, N, _ = x.shape # B, N, C | |
| # Normalization | |
| x = self.norm(x) | |
| qkv = self.qkv(x) | |
| # (B, N, num_heads, d) | |
| q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.d], dim=3) | |
| # (B, num_heads, N, d) | |
| q = q.permute(0, 2, 1, 3) | |
| k = k.permute(0, 2, 1, 3) | |
| v = v.permute(0, 2, 1, 3) | |
| self.ab = self.ab.to(self.attention_biases.device) | |
| attn = (q @ k.transpose(-2, -1)) * self.scale + ( | |
| self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab | |
| ) | |
| attn = attn.softmax(dim=-1) | |
| x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh) | |
| return self.proj(x) | |
| class TinyViTBlock(nn.Module): | |
| """ | |
| TinyViT Block that applies self-attention and a local convolution to the input. | |
| This block is a key component of the TinyViT architecture, combining self-attention mechanisms with | |
| local convolutions to process input features efficiently. | |
| Attributes: | |
| dim (int): The dimensionality of the input and output. | |
| input_resolution (Tuple[int, int]): Spatial resolution of the input feature map. | |
| num_heads (int): Number of attention heads. | |
| window_size (int): Size of the attention window. | |
| mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension. | |
| drop_path (nn.Module): Stochastic depth layer, identity function during inference. | |
| attn (Attention): Self-attention module. | |
| mlp (Mlp): Multi-layer perceptron module. | |
| local_conv (Conv2d_BN): Depth-wise local convolution layer. | |
| Methods: | |
| forward: Processes the input through the TinyViT block. | |
| extra_repr: Returns a string with extra information about the block's parameters. | |
| Examples: | |
| >>> input_tensor = torch.randn(1, 196, 192) | |
| >>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3) | |
| >>> output = block(input_tensor) | |
| >>> print(output.shape) | |
| torch.Size([1, 196, 192]) | |
| """ | |
| def __init__( | |
| self, | |
| dim, | |
| input_resolution, | |
| num_heads, | |
| window_size=7, | |
| mlp_ratio=4.0, | |
| drop=0.0, | |
| drop_path=0.0, | |
| local_conv_size=3, | |
| activation=nn.GELU, | |
| ): | |
| """ | |
| Initializes a TinyViT block with self-attention and local convolution. | |
| This block is a key component of the TinyViT architecture, combining self-attention mechanisms with | |
| local convolutions to process input features efficiently. | |
| Args: | |
| dim (int): Dimensionality of the input and output features. | |
| input_resolution (Tuple[int, int]): Spatial resolution of the input feature map (height, width). | |
| num_heads (int): Number of attention heads. | |
| window_size (int): Size of the attention window. Must be greater than 0. | |
| mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension. | |
| drop (float): Dropout rate. | |
| drop_path (float): Stochastic depth rate. | |
| local_conv_size (int): Kernel size of the local convolution. | |
| activation (torch.nn.Module): Activation function for MLP. | |
| Raises: | |
| AssertionError: If window_size is not greater than 0. | |
| AssertionError: If dim is not divisible by num_heads. | |
| Examples: | |
| >>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3) | |
| >>> input_tensor = torch.randn(1, 196, 192) | |
| >>> output = block(input_tensor) | |
| >>> print(output.shape) | |
| torch.Size([1, 196, 192]) | |
| """ | |
| super().__init__() | |
| self.dim = dim | |
| self.input_resolution = input_resolution | |
| self.num_heads = num_heads | |
| assert window_size > 0, "window_size must be greater than 0" | |
| self.window_size = window_size | |
| self.mlp_ratio = mlp_ratio | |
| # NOTE: `DropPath` is needed only for training. | |
| # self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.drop_path = nn.Identity() | |
| assert dim % num_heads == 0, "dim must be divisible by num_heads" | |
| head_dim = dim // num_heads | |
| window_resolution = (window_size, window_size) | |
| self.attn = Attention(dim, head_dim, num_heads, attn_ratio=1, resolution=window_resolution) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| mlp_activation = activation | |
| self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=mlp_activation, drop=drop) | |
| pad = local_conv_size // 2 | |
| self.local_conv = Conv2d_BN(dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim) | |
| def forward(self, x): | |
| """Applies self-attention, local convolution, and MLP operations to the input tensor.""" | |
| h, w = self.input_resolution | |
| b, hw, c = x.shape # batch, height*width, channels | |
| assert hw == h * w, "input feature has wrong size" | |
| res_x = x | |
| if h == self.window_size and w == self.window_size: | |
| x = self.attn(x) | |
| else: | |
| x = x.view(b, h, w, c) | |
| pad_b = (self.window_size - h % self.window_size) % self.window_size | |
| pad_r = (self.window_size - w % self.window_size) % self.window_size | |
| padding = pad_b > 0 or pad_r > 0 | |
| if padding: | |
| x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b)) | |
| pH, pW = h + pad_b, w + pad_r | |
| nH = pH // self.window_size | |
| nW = pW // self.window_size | |
| # Window partition | |
| x = ( | |
| x.view(b, nH, self.window_size, nW, self.window_size, c) | |
| .transpose(2, 3) | |
| .reshape(b * nH * nW, self.window_size * self.window_size, c) | |
| ) | |
| x = self.attn(x) | |
| # Window reverse | |
| x = x.view(b, nH, nW, self.window_size, self.window_size, c).transpose(2, 3).reshape(b, pH, pW, c) | |
| if padding: | |
| x = x[:, :h, :w].contiguous() | |
| x = x.view(b, hw, c) | |
| x = res_x + self.drop_path(x) | |
| x = x.transpose(1, 2).reshape(b, c, h, w) | |
| x = self.local_conv(x) | |
| x = x.view(b, c, hw).transpose(1, 2) | |
| return x + self.drop_path(self.mlp(x)) | |
| def extra_repr(self) -> str: | |
| """ | |
| Returns a string representation of the TinyViTBlock's parameters. | |
| This method provides a formatted string containing key information about the TinyViTBlock, including its | |
| dimension, input resolution, number of attention heads, window size, and MLP ratio. | |
| Returns: | |
| (str): A formatted string containing the block's parameters. | |
| Examples: | |
| >>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3, window_size=7, mlp_ratio=4.0) | |
| >>> print(block.extra_repr()) | |
| dim=192, input_resolution=(14, 14), num_heads=3, window_size=7, mlp_ratio=4.0 | |
| """ | |
| return ( | |
| f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " | |
| f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}" | |
| ) | |
| class BasicLayer(nn.Module): | |
| """ | |
| A basic TinyViT layer for one stage in a TinyViT architecture. | |
| This class represents a single layer in the TinyViT model, consisting of multiple TinyViT blocks | |
| and an optional downsampling operation. | |
| Attributes: | |
| dim (int): The dimensionality of the input and output features. | |
| input_resolution (Tuple[int, int]): Spatial resolution of the input feature map. | |
| depth (int): Number of TinyViT blocks in this layer. | |
| use_checkpoint (bool): Whether to use gradient checkpointing to save memory. | |
| blocks (nn.ModuleList): List of TinyViT blocks that make up this layer. | |
| downsample (nn.Module | None): Downsample layer at the end of the layer, if specified. | |
| Methods: | |
| forward: Processes the input through the layer's blocks and optional downsampling. | |
| extra_repr: Returns a string with the layer's parameters for printing. | |
| Examples: | |
| >>> input_tensor = torch.randn(1, 3136, 192) | |
| >>> layer = BasicLayer(dim=192, input_resolution=(56, 56), depth=2, num_heads=3, window_size=7) | |
| >>> output = layer(input_tensor) | |
| >>> print(output.shape) | |
| torch.Size([1, 784, 384]) | |
| """ | |
| def __init__( | |
| self, | |
| dim, | |
| input_resolution, | |
| depth, | |
| num_heads, | |
| window_size, | |
| mlp_ratio=4.0, | |
| drop=0.0, | |
| drop_path=0.0, | |
| downsample=None, | |
| use_checkpoint=False, | |
| local_conv_size=3, | |
| activation=nn.GELU, | |
| out_dim=None, | |
| ): | |
| """ | |
| Initializes a BasicLayer in the TinyViT architecture. | |
| This layer consists of multiple TinyViT blocks and an optional downsampling operation. It is designed to | |
| process feature maps at a specific resolution and dimensionality within the TinyViT model. | |
| Args: | |
| dim (int): Dimensionality of the input and output features. | |
| input_resolution (Tuple[int, int]): Spatial resolution of the input feature map (height, width). | |
| depth (int): Number of TinyViT blocks in this layer. | |
| num_heads (int): Number of attention heads in each TinyViT block. | |
| window_size (int): Size of the local window for attention computation. | |
| mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension. | |
| drop (float): Dropout rate. | |
| drop_path (float | List[float]): Stochastic depth rate. Can be a float or a list of floats for each block. | |
| downsample (nn.Module | None): Downsampling layer at the end of the layer. None to skip downsampling. | |
| use_checkpoint (bool): Whether to use gradient checkpointing to save memory. | |
| local_conv_size (int): Kernel size for the local convolution in each TinyViT block. | |
| activation (nn.Module): Activation function used in the MLP. | |
| out_dim (int | None): Output dimension after downsampling. None means it will be the same as `dim`. | |
| Raises: | |
| ValueError: If `drop_path` is a list and its length doesn't match `depth`. | |
| Examples: | |
| >>> layer = BasicLayer(dim=96, input_resolution=(56, 56), depth=2, num_heads=3, window_size=7) | |
| >>> x = torch.randn(1, 56 * 56, 96) | |
| >>> output = layer(x) | |
| >>> print(output.shape) | |
| """ | |
| super().__init__() | |
| self.dim = dim | |
| self.input_resolution = input_resolution | |
| self.depth = depth | |
| self.use_checkpoint = use_checkpoint | |
| # Build blocks | |
| self.blocks = nn.ModuleList( | |
| [ | |
| TinyViTBlock( | |
| dim=dim, | |
| input_resolution=input_resolution, | |
| num_heads=num_heads, | |
| window_size=window_size, | |
| mlp_ratio=mlp_ratio, | |
| drop=drop, | |
| drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | |
| local_conv_size=local_conv_size, | |
| activation=activation, | |
| ) | |
| for i in range(depth) | |
| ] | |
| ) | |
| # Patch merging layer | |
| self.downsample = ( | |
| None | |
| if downsample is None | |
| else downsample(input_resolution, dim=dim, out_dim=out_dim, activation=activation) | |
| ) | |
| def forward(self, x): | |
| """Processes input through TinyViT blocks and optional downsampling.""" | |
| for blk in self.blocks: | |
| x = checkpoint.checkpoint(blk, x) if self.use_checkpoint else blk(x) | |
| return x if self.downsample is None else self.downsample(x) | |
| def extra_repr(self) -> str: | |
| """Returns a string with the layer's parameters for printing.""" | |
| return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" | |
| class TinyViT(nn.Module): | |
| """ | |
| TinyViT: A compact vision transformer architecture for efficient image classification and feature extraction. | |
| This class implements the TinyViT model, which combines elements of vision transformers and convolutional | |
| neural networks for improved efficiency and performance on vision tasks. | |
| Attributes: | |
| img_size (int): Input image size. | |
| num_classes (int): Number of classification classes. | |
| depths (List[int]): Number of blocks in each stage. | |
| num_layers (int): Total number of layers in the network. | |
| mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension. | |
| patch_embed (PatchEmbed): Module for patch embedding. | |
| patches_resolution (Tuple[int, int]): Resolution of embedded patches. | |
| layers (nn.ModuleList): List of network layers. | |
| norm_head (nn.LayerNorm): Layer normalization for the classifier head. | |
| head (nn.Linear): Linear layer for final classification. | |
| neck (nn.Sequential): Neck module for feature refinement. | |
| Methods: | |
| set_layer_lr_decay: Sets layer-wise learning rate decay. | |
| _init_weights: Initializes weights for linear and normalization layers. | |
| no_weight_decay_keywords: Returns keywords for parameters that should not use weight decay. | |
| forward_features: Processes input through the feature extraction layers. | |
| forward: Performs a forward pass through the entire network. | |
| Examples: | |
| >>> model = TinyViT(img_size=224, num_classes=1000) | |
| >>> x = torch.randn(1, 3, 224, 224) | |
| >>> features = model.forward_features(x) | |
| >>> print(features.shape) | |
| torch.Size([1, 256, 64, 64]) | |
| """ | |
| def __init__( | |
| self, | |
| img_size=224, | |
| in_chans=3, | |
| num_classes=1000, | |
| embed_dims=(96, 192, 384, 768), | |
| depths=(2, 2, 6, 2), | |
| num_heads=(3, 6, 12, 24), | |
| window_sizes=(7, 7, 14, 7), | |
| mlp_ratio=4.0, | |
| drop_rate=0.0, | |
| drop_path_rate=0.1, | |
| use_checkpoint=False, | |
| mbconv_expand_ratio=4.0, | |
| local_conv_size=3, | |
| layer_lr_decay=1.0, | |
| ): | |
| """ | |
| Initializes the TinyViT model. | |
| This constructor sets up the TinyViT architecture, including patch embedding, multiple layers of | |
| attention and convolution blocks, and a classification head. | |
| Args: | |
| img_size (int): Size of the input image. Default is 224. | |
| in_chans (int): Number of input channels. Default is 3. | |
| num_classes (int): Number of classes for classification. Default is 1000. | |
| embed_dims (Tuple[int, int, int, int]): Embedding dimensions for each stage. | |
| Default is (96, 192, 384, 768). | |
| depths (Tuple[int, int, int, int]): Number of blocks in each stage. Default is (2, 2, 6, 2). | |
| num_heads (Tuple[int, int, int, int]): Number of attention heads in each stage. | |
| Default is (3, 6, 12, 24). | |
| window_sizes (Tuple[int, int, int, int]): Window sizes for each stage. Default is (7, 7, 14, 7). | |
| mlp_ratio (float): Ratio of MLP hidden dim to embedding dim. Default is 4.0. | |
| drop_rate (float): Dropout rate. Default is 0.0. | |
| drop_path_rate (float): Stochastic depth rate. Default is 0.1. | |
| use_checkpoint (bool): Whether to use checkpointing to save memory. Default is False. | |
| mbconv_expand_ratio (float): Expansion ratio for MBConv layer. Default is 4.0. | |
| local_conv_size (int): Kernel size for local convolutions. Default is 3. | |
| layer_lr_decay (float): Layer-wise learning rate decay factor. Default is 1.0. | |
| Examples: | |
| >>> model = TinyViT(img_size=224, num_classes=1000) | |
| >>> x = torch.randn(1, 3, 224, 224) | |
| >>> output = model(x) | |
| >>> print(output.shape) | |
| torch.Size([1, 1000]) | |
| """ | |
| super().__init__() | |
| self.img_size = img_size | |
| self.num_classes = num_classes | |
| self.depths = depths | |
| self.num_layers = len(depths) | |
| self.mlp_ratio = mlp_ratio | |
| activation = nn.GELU | |
| self.patch_embed = PatchEmbed( | |
| in_chans=in_chans, embed_dim=embed_dims[0], resolution=img_size, activation=activation | |
| ) | |
| patches_resolution = self.patch_embed.patches_resolution | |
| self.patches_resolution = patches_resolution | |
| # Stochastic depth | |
| dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
| # Build layers | |
| self.layers = nn.ModuleList() | |
| for i_layer in range(self.num_layers): | |
| kwargs = dict( | |
| dim=embed_dims[i_layer], | |
| input_resolution=( | |
| patches_resolution[0] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer)), | |
| patches_resolution[1] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer)), | |
| ), | |
| # input_resolution=(patches_resolution[0] // (2 ** i_layer), | |
| # patches_resolution[1] // (2 ** i_layer)), | |
| depth=depths[i_layer], | |
| drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], | |
| downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, | |
| use_checkpoint=use_checkpoint, | |
| out_dim=embed_dims[min(i_layer + 1, len(embed_dims) - 1)], | |
| activation=activation, | |
| ) | |
| if i_layer == 0: | |
| layer = ConvLayer(conv_expand_ratio=mbconv_expand_ratio, **kwargs) | |
| else: | |
| layer = BasicLayer( | |
| num_heads=num_heads[i_layer], | |
| window_size=window_sizes[i_layer], | |
| mlp_ratio=self.mlp_ratio, | |
| drop=drop_rate, | |
| local_conv_size=local_conv_size, | |
| **kwargs, | |
| ) | |
| self.layers.append(layer) | |
| # Classifier head | |
| self.norm_head = nn.LayerNorm(embed_dims[-1]) | |
| self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity() | |
| # Init weights | |
| self.apply(self._init_weights) | |
| self.set_layer_lr_decay(layer_lr_decay) | |
| self.neck = nn.Sequential( | |
| nn.Conv2d( | |
| embed_dims[-1], | |
| 256, | |
| kernel_size=1, | |
| bias=False, | |
| ), | |
| LayerNorm2d(256), | |
| nn.Conv2d( | |
| 256, | |
| 256, | |
| kernel_size=3, | |
| padding=1, | |
| bias=False, | |
| ), | |
| LayerNorm2d(256), | |
| ) | |
| def set_layer_lr_decay(self, layer_lr_decay): | |
| """Sets layer-wise learning rate decay for the TinyViT model based on depth.""" | |
| decay_rate = layer_lr_decay | |
| # Layers -> blocks (depth) | |
| depth = sum(self.depths) | |
| lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)] | |
| def _set_lr_scale(m, scale): | |
| """Sets the learning rate scale for each layer in the model based on the layer's depth.""" | |
| for p in m.parameters(): | |
| p.lr_scale = scale | |
| self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0])) | |
| i = 0 | |
| for layer in self.layers: | |
| for block in layer.blocks: | |
| block.apply(lambda x: _set_lr_scale(x, lr_scales[i])) | |
| i += 1 | |
| if layer.downsample is not None: | |
| layer.downsample.apply(lambda x: _set_lr_scale(x, lr_scales[i - 1])) | |
| assert i == depth | |
| for m in [self.norm_head, self.head]: | |
| m.apply(lambda x: _set_lr_scale(x, lr_scales[-1])) | |
| for k, p in self.named_parameters(): | |
| p.param_name = k | |
| def _check_lr_scale(m): | |
| """Checks if the learning rate scale attribute is present in module's parameters.""" | |
| for p in m.parameters(): | |
| assert hasattr(p, "lr_scale"), p.param_name | |
| self.apply(_check_lr_scale) | |
| def _init_weights(m): | |
| """Initializes weights for linear and normalization layers in the TinyViT model.""" | |
| if isinstance(m, nn.Linear): | |
| # NOTE: This initialization is needed only for training. | |
| # trunc_normal_(m.weight, std=.02) | |
| if m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| def no_weight_decay_keywords(self): | |
| """Returns a set of keywords for parameters that should not use weight decay.""" | |
| return {"attention_biases"} | |
| def forward_features(self, x): | |
| """Processes input through feature extraction layers, returning spatial features.""" | |
| x = self.patch_embed(x) # x input is (N, C, H, W) | |
| x = self.layers[0](x) | |
| start_i = 1 | |
| for i in range(start_i, len(self.layers)): | |
| layer = self.layers[i] | |
| x = layer(x) | |
| batch, _, channel = x.shape | |
| x = x.view(batch, self.patches_resolution[0] // 4, self.patches_resolution[1] // 4, channel) | |
| x = x.permute(0, 3, 1, 2) | |
| return self.neck(x) | |
| def forward(self, x): | |
| """Performs the forward pass through the TinyViT model, extracting features from the input image.""" | |
| return self.forward_features(x) | |
| def set_imgsz(self, imgsz=[1024, 1024]): | |
| """ | |
| Set image size to make model compatible with different image sizes. | |
| Args: | |
| imgsz (Tuple[int, int]): The size of the input image. | |
| """ | |
| imgsz = [s // 4 for s in imgsz] | |
| self.patches_resolution = imgsz | |
| for i, layer in enumerate(self.layers): | |
| input_resolution = ( | |
| imgsz[0] // (2 ** (i - 1 if i == 3 else i)), | |
| imgsz[1] // (2 ** (i - 1 if i == 3 else i)), | |
| ) | |
| layer.input_resolution = input_resolution | |
| if layer.downsample is not None: | |
| layer.downsample.input_resolution = input_resolution | |
| if isinstance(layer, BasicLayer): | |
| for b in layer.blocks: | |
| b.input_resolution = input_resolution | |