Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import pipeline
|
| 3 |
import pandas as pd
|
| 4 |
import os
|
| 5 |
import re
|
|
@@ -12,7 +12,6 @@ english_model = pipeline(
|
|
| 12 |
model="siebert/sentiment-roberta-large-english"
|
| 13 |
)
|
| 14 |
|
| 15 |
-
# Replace with your own fine-tuned models
|
| 16 |
urdu_model = pipeline(
|
| 17 |
"sentiment-analysis",
|
| 18 |
model="tahamueed23/fine_tuned_cardiffnlp_urdu_and_roman-urdu"
|
|
@@ -28,8 +27,9 @@ roman_urdu_model = pipeline(
|
|
| 28 |
# -----------------------------
|
| 29 |
SAVE_FILE = "sentiment_logs.csv"
|
| 30 |
if not os.path.exists(SAVE_FILE):
|
| 31 |
-
|
| 32 |
-
|
|
|
|
| 33 |
|
| 34 |
# -----------------------------
|
| 35 |
# Language Detection (simple rule-based)
|
|
@@ -48,9 +48,9 @@ def detect_language(text):
|
|
| 48 |
# -----------------------------
|
| 49 |
def normalize_label(label):
|
| 50 |
label = label.lower()
|
| 51 |
-
if "positive" in label:
|
| 52 |
return "Positive"
|
| 53 |
-
elif "negative" in label:
|
| 54 |
return "Negative"
|
| 55 |
else:
|
| 56 |
return "Neutral"
|
|
@@ -70,38 +70,41 @@ def sentiment_with_tips(sentiment):
|
|
| 70 |
# Main Sentiment Function
|
| 71 |
# -----------------------------
|
| 72 |
def analyze_sentiment(text, lang_hint):
|
| 73 |
-
if not text.strip():
|
| 74 |
-
return "⚠️ Please enter a sentence.", "", "", SAVE_FILE
|
| 75 |
-
|
| 76 |
-
# Auto detect if language hint is not clear
|
| 77 |
-
lang = lang_hint if lang_hint != "Auto Detect" else detect_language(text)
|
| 78 |
-
|
| 79 |
-
# Select model
|
| 80 |
-
if lang == "English":
|
| 81 |
-
result = english_model(text)[0]
|
| 82 |
-
elif lang == "Urdu":
|
| 83 |
-
result = urdu_model(text)[0]
|
| 84 |
-
else:
|
| 85 |
-
result = roman_urdu_model(text)[0]
|
| 86 |
-
|
| 87 |
-
# Process results
|
| 88 |
-
sentiment = normalize_label(result["label"])
|
| 89 |
-
score = round(result["score"], 3)
|
| 90 |
-
explanation = sentiment_with_tips(sentiment)
|
| 91 |
-
|
| 92 |
-
# Save to CSV
|
| 93 |
try:
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
# -----------------------------
|
| 107 |
# Gradio UI
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
import pandas as pd
|
| 4 |
import os
|
| 5 |
import re
|
|
|
|
| 12 |
model="siebert/sentiment-roberta-large-english"
|
| 13 |
)
|
| 14 |
|
|
|
|
| 15 |
urdu_model = pipeline(
|
| 16 |
"sentiment-analysis",
|
| 17 |
model="tahamueed23/fine_tuned_cardiffnlp_urdu_and_roman-urdu"
|
|
|
|
| 27 |
# -----------------------------
|
| 28 |
SAVE_FILE = "sentiment_logs.csv"
|
| 29 |
if not os.path.exists(SAVE_FILE):
|
| 30 |
+
pd.DataFrame(columns=["Sentence", "Language", "Sentiment", "Confidence"]).to_csv(
|
| 31 |
+
SAVE_FILE, index=False, encoding="utf-8-sig"
|
| 32 |
+
)
|
| 33 |
|
| 34 |
# -----------------------------
|
| 35 |
# Language Detection (simple rule-based)
|
|
|
|
| 48 |
# -----------------------------
|
| 49 |
def normalize_label(label):
|
| 50 |
label = label.lower()
|
| 51 |
+
if "pos" in label or "positive" in label:
|
| 52 |
return "Positive"
|
| 53 |
+
elif "neg" in label or "negative" in label:
|
| 54 |
return "Negative"
|
| 55 |
else:
|
| 56 |
return "Neutral"
|
|
|
|
| 70 |
# Main Sentiment Function
|
| 71 |
# -----------------------------
|
| 72 |
def analyze_sentiment(text, lang_hint):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
try:
|
| 74 |
+
if not text.strip():
|
| 75 |
+
return "⚠️ Please enter a sentence.", "", "", SAVE_FILE
|
| 76 |
+
|
| 77 |
+
# Auto detect if language hint is not selected
|
| 78 |
+
lang = lang_hint if lang_hint != "Auto Detect" else detect_language(text)
|
| 79 |
+
|
| 80 |
+
# Select model
|
| 81 |
+
if lang == "English":
|
| 82 |
+
result = english_model(text)[0]
|
| 83 |
+
elif lang == "Urdu":
|
| 84 |
+
result = urdu_model(text)[0]
|
| 85 |
+
else:
|
| 86 |
+
result = roman_urdu_model(text)[0]
|
| 87 |
+
|
| 88 |
+
# Process results
|
| 89 |
+
sentiment = normalize_label(result["label"])
|
| 90 |
+
score = round(float(result["score"]), 3)
|
| 91 |
+
explanation = sentiment_with_tips(sentiment)
|
| 92 |
+
|
| 93 |
+
# Save to CSV (UTF-8 safe)
|
| 94 |
+
try:
|
| 95 |
+
df = pd.read_csv(SAVE_FILE, encoding="utf-8-sig")
|
| 96 |
+
except:
|
| 97 |
+
df = pd.DataFrame(columns=["Sentence", "Language", "Sentiment", "Confidence"])
|
| 98 |
+
|
| 99 |
+
new_row = pd.DataFrame([[text, lang, sentiment, score]],
|
| 100 |
+
columns=["Sentence", "Language", "Sentiment", "Confidence"])
|
| 101 |
+
df = pd.concat([df, new_row], ignore_index=True)
|
| 102 |
+
df.to_csv(SAVE_FILE, index=False, encoding="utf-8-sig")
|
| 103 |
+
|
| 104 |
+
return sentiment, str(score), explanation, SAVE_FILE
|
| 105 |
+
|
| 106 |
+
except Exception as e:
|
| 107 |
+
return f"⚠️ Error: {str(e)}", "", "", SAVE_FILE
|
| 108 |
|
| 109 |
# -----------------------------
|
| 110 |
# Gradio UI
|