cyberosa
commited on
Commit
·
9679b78
1
Parent(s):
534a2d6
fixing update of tool accuracy file
Browse files- data/tools_accuracy.csv +2 -2
- notebooks/markets_analysis.ipynb +1372 -0
- scripts/tools.py +9 -8
- tabs/tool_win.py +48 -35
data/tools_accuracy.csv
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8103fd33f62fd3080293e6b7677dde31efe71a5a9719fbdcf960d7323726e2c2
|
| 3 |
+
size 1010
|
notebooks/markets_analysis.ipynb
ADDED
|
@@ -0,0 +1,1372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import pandas as pd\n",
|
| 10 |
+
"import matplotlib.pyplot as plt\n",
|
| 11 |
+
"import seaborn as sns\n",
|
| 12 |
+
"import gc\n",
|
| 13 |
+
"sns.set_style(\"darkgrid\")"
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"cell_type": "code",
|
| 18 |
+
"execution_count": 7,
|
| 19 |
+
"metadata": {},
|
| 20 |
+
"outputs": [],
|
| 21 |
+
"source": [
|
| 22 |
+
"fpmms = pd.read_parquet('../data/fpmms.parquet')"
|
| 23 |
+
]
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"cell_type": "code",
|
| 27 |
+
"execution_count": 3,
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"outputs": [
|
| 30 |
+
{
|
| 31 |
+
"data": {
|
| 32 |
+
"text/html": [
|
| 33 |
+
"<div>\n",
|
| 34 |
+
"<style scoped>\n",
|
| 35 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 36 |
+
" vertical-align: middle;\n",
|
| 37 |
+
" }\n",
|
| 38 |
+
"\n",
|
| 39 |
+
" .dataframe tbody tr th {\n",
|
| 40 |
+
" vertical-align: top;\n",
|
| 41 |
+
" }\n",
|
| 42 |
+
"\n",
|
| 43 |
+
" .dataframe thead th {\n",
|
| 44 |
+
" text-align: right;\n",
|
| 45 |
+
" }\n",
|
| 46 |
+
"</style>\n",
|
| 47 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 48 |
+
" <thead>\n",
|
| 49 |
+
" <tr style=\"text-align: right;\">\n",
|
| 50 |
+
" <th></th>\n",
|
| 51 |
+
" <th>id</th>\n",
|
| 52 |
+
" <th>currentAnswer</th>\n",
|
| 53 |
+
" <th>title</th>\n",
|
| 54 |
+
" </tr>\n",
|
| 55 |
+
" </thead>\n",
|
| 56 |
+
" <tbody>\n",
|
| 57 |
+
" <tr>\n",
|
| 58 |
+
" <th>0</th>\n",
|
| 59 |
+
" <td>0x0020d13c89140b47e10db54cbd53852b90bc1391</td>\n",
|
| 60 |
+
" <td>No</td>\n",
|
| 61 |
+
" <td>Will the Francis Scott Key Bridge in Baltimore...</td>\n",
|
| 62 |
+
" </tr>\n",
|
| 63 |
+
" <tr>\n",
|
| 64 |
+
" <th>1</th>\n",
|
| 65 |
+
" <td>0x003ae5e007cc38b3f86b0ed7c82f938a1285ac07</td>\n",
|
| 66 |
+
" <td>No</td>\n",
|
| 67 |
+
" <td>Will FC Saarbrucken reach the final of the Ger...</td>\n",
|
| 68 |
+
" </tr>\n",
|
| 69 |
+
" <tr>\n",
|
| 70 |
+
" <th>2</th>\n",
|
| 71 |
+
" <td>0x004c8d4c619dc6b9caa940f5ea7ef699ae85359c</td>\n",
|
| 72 |
+
" <td>Yes</td>\n",
|
| 73 |
+
" <td>Will the pro-life activists convicted for 'con...</td>\n",
|
| 74 |
+
" </tr>\n",
|
| 75 |
+
" <tr>\n",
|
| 76 |
+
" <th>3</th>\n",
|
| 77 |
+
" <td>0x005e3f7a90585acbec807425a750fbba1d0c2b5c</td>\n",
|
| 78 |
+
" <td>Yes</td>\n",
|
| 79 |
+
" <td>Will Apple announce the release of a new M4 ch...</td>\n",
|
| 80 |
+
" </tr>\n",
|
| 81 |
+
" <tr>\n",
|
| 82 |
+
" <th>4</th>\n",
|
| 83 |
+
" <td>0x0094fa304017d5c2b355790e2976f769ea600492</td>\n",
|
| 84 |
+
" <td>No</td>\n",
|
| 85 |
+
" <td>Will the Hisense U8K be considered a top-tier ...</td>\n",
|
| 86 |
+
" </tr>\n",
|
| 87 |
+
" </tbody>\n",
|
| 88 |
+
"</table>\n",
|
| 89 |
+
"</div>"
|
| 90 |
+
],
|
| 91 |
+
"text/plain": [
|
| 92 |
+
" id currentAnswer \\\n",
|
| 93 |
+
"0 0x0020d13c89140b47e10db54cbd53852b90bc1391 No \n",
|
| 94 |
+
"1 0x003ae5e007cc38b3f86b0ed7c82f938a1285ac07 No \n",
|
| 95 |
+
"2 0x004c8d4c619dc6b9caa940f5ea7ef699ae85359c Yes \n",
|
| 96 |
+
"3 0x005e3f7a90585acbec807425a750fbba1d0c2b5c Yes \n",
|
| 97 |
+
"4 0x0094fa304017d5c2b355790e2976f769ea600492 No \n",
|
| 98 |
+
"\n",
|
| 99 |
+
" title \n",
|
| 100 |
+
"0 Will the Francis Scott Key Bridge in Baltimore... \n",
|
| 101 |
+
"1 Will FC Saarbrucken reach the final of the Ger... \n",
|
| 102 |
+
"2 Will the pro-life activists convicted for 'con... \n",
|
| 103 |
+
"3 Will Apple announce the release of a new M4 ch... \n",
|
| 104 |
+
"4 Will the Hisense U8K be considered a top-tier ... "
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
"execution_count": 3,
|
| 108 |
+
"metadata": {},
|
| 109 |
+
"output_type": "execute_result"
|
| 110 |
+
}
|
| 111 |
+
],
|
| 112 |
+
"source": [
|
| 113 |
+
"fpmms.head()"
|
| 114 |
+
]
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"cell_type": "code",
|
| 118 |
+
"execution_count": 4,
|
| 119 |
+
"metadata": {},
|
| 120 |
+
"outputs": [
|
| 121 |
+
{
|
| 122 |
+
"data": {
|
| 123 |
+
"text/plain": [
|
| 124 |
+
"currentAnswer\n",
|
| 125 |
+
"No 2170\n",
|
| 126 |
+
"Yes 1500\n",
|
| 127 |
+
"no 1\n",
|
| 128 |
+
"False 1\n",
|
| 129 |
+
"IND 1\n",
|
| 130 |
+
"Name: count, dtype: int64"
|
| 131 |
+
]
|
| 132 |
+
},
|
| 133 |
+
"execution_count": 4,
|
| 134 |
+
"metadata": {},
|
| 135 |
+
"output_type": "execute_result"
|
| 136 |
+
}
|
| 137 |
+
],
|
| 138 |
+
"source": [
|
| 139 |
+
"fpmms.currentAnswer.value_counts()"
|
| 140 |
+
]
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"cell_type": "code",
|
| 144 |
+
"execution_count": 5,
|
| 145 |
+
"metadata": {},
|
| 146 |
+
"outputs": [
|
| 147 |
+
{
|
| 148 |
+
"name": "stdout",
|
| 149 |
+
"output_type": "stream",
|
| 150 |
+
"text": [
|
| 151 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
| 152 |
+
"RangeIndex: 3673 entries, 0 to 3672\n",
|
| 153 |
+
"Data columns (total 3 columns):\n",
|
| 154 |
+
" # Column Non-Null Count Dtype \n",
|
| 155 |
+
"--- ------ -------------- ----- \n",
|
| 156 |
+
" 0 id 3673 non-null object\n",
|
| 157 |
+
" 1 currentAnswer 3673 non-null object\n",
|
| 158 |
+
" 2 title 3673 non-null object\n",
|
| 159 |
+
"dtypes: object(3)\n",
|
| 160 |
+
"memory usage: 86.2+ KB\n"
|
| 161 |
+
]
|
| 162 |
+
}
|
| 163 |
+
],
|
| 164 |
+
"source": [
|
| 165 |
+
"fpmms.info()"
|
| 166 |
+
]
|
| 167 |
+
},
|
| 168 |
+
{
|
| 169 |
+
"cell_type": "code",
|
| 170 |
+
"execution_count": 8,
|
| 171 |
+
"metadata": {},
|
| 172 |
+
"outputs": [],
|
| 173 |
+
"source": [
|
| 174 |
+
"all_trades = pd.read_parquet('../data/all_trades_profitability.parquet')"
|
| 175 |
+
]
|
| 176 |
+
},
|
| 177 |
+
{
|
| 178 |
+
"cell_type": "code",
|
| 179 |
+
"execution_count": 33,
|
| 180 |
+
"metadata": {},
|
| 181 |
+
"outputs": [
|
| 182 |
+
{
|
| 183 |
+
"data": {
|
| 184 |
+
"text/plain": [
|
| 185 |
+
"27707"
|
| 186 |
+
]
|
| 187 |
+
},
|
| 188 |
+
"execution_count": 33,
|
| 189 |
+
"metadata": {},
|
| 190 |
+
"output_type": "execute_result"
|
| 191 |
+
}
|
| 192 |
+
],
|
| 193 |
+
"source": [
|
| 194 |
+
"len(all_trades)"
|
| 195 |
+
]
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"cell_type": "code",
|
| 199 |
+
"execution_count": 34,
|
| 200 |
+
"metadata": {},
|
| 201 |
+
"outputs": [
|
| 202 |
+
{
|
| 203 |
+
"data": {
|
| 204 |
+
"text/plain": [
|
| 205 |
+
"127674"
|
| 206 |
+
]
|
| 207 |
+
},
|
| 208 |
+
"execution_count": 34,
|
| 209 |
+
"metadata": {},
|
| 210 |
+
"output_type": "execute_result"
|
| 211 |
+
}
|
| 212 |
+
],
|
| 213 |
+
"source": [
|
| 214 |
+
"len(tools)"
|
| 215 |
+
]
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"cell_type": "code",
|
| 219 |
+
"execution_count": 9,
|
| 220 |
+
"metadata": {},
|
| 221 |
+
"outputs": [
|
| 222 |
+
{
|
| 223 |
+
"data": {
|
| 224 |
+
"text/html": [
|
| 225 |
+
"<div>\n",
|
| 226 |
+
"<style scoped>\n",
|
| 227 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 228 |
+
" vertical-align: middle;\n",
|
| 229 |
+
" }\n",
|
| 230 |
+
"\n",
|
| 231 |
+
" .dataframe tbody tr th {\n",
|
| 232 |
+
" vertical-align: top;\n",
|
| 233 |
+
" }\n",
|
| 234 |
+
"\n",
|
| 235 |
+
" .dataframe thead th {\n",
|
| 236 |
+
" text-align: right;\n",
|
| 237 |
+
" }\n",
|
| 238 |
+
"</style>\n",
|
| 239 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 240 |
+
" <thead>\n",
|
| 241 |
+
" <tr style=\"text-align: right;\">\n",
|
| 242 |
+
" <th></th>\n",
|
| 243 |
+
" <th>trader_address</th>\n",
|
| 244 |
+
" <th>trade_id</th>\n",
|
| 245 |
+
" <th>creation_timestamp</th>\n",
|
| 246 |
+
" <th>title</th>\n",
|
| 247 |
+
" <th>market_status</th>\n",
|
| 248 |
+
" <th>collateral_amount</th>\n",
|
| 249 |
+
" <th>outcome_index</th>\n",
|
| 250 |
+
" <th>trade_fee_amount</th>\n",
|
| 251 |
+
" <th>outcomes_tokens_traded</th>\n",
|
| 252 |
+
" <th>current_answer</th>\n",
|
| 253 |
+
" <th>is_invalid</th>\n",
|
| 254 |
+
" <th>winning_trade</th>\n",
|
| 255 |
+
" <th>earnings</th>\n",
|
| 256 |
+
" <th>redeemed</th>\n",
|
| 257 |
+
" <th>redeemed_amount</th>\n",
|
| 258 |
+
" <th>num_mech_calls</th>\n",
|
| 259 |
+
" <th>mech_fee_amount</th>\n",
|
| 260 |
+
" <th>net_earnings</th>\n",
|
| 261 |
+
" <th>roi</th>\n",
|
| 262 |
+
" </tr>\n",
|
| 263 |
+
" </thead>\n",
|
| 264 |
+
" <tbody>\n",
|
| 265 |
+
" <tr>\n",
|
| 266 |
+
" <th>0</th>\n",
|
| 267 |
+
" <td>0x034c4ad84f7ac6638bf19300d5bbe7d9b981e736</td>\n",
|
| 268 |
+
" <td>0x005e3f7a90585acbec807425a750fbba1d0c2b5c0x03...</td>\n",
|
| 269 |
+
" <td>2024-05-12 04:26:35+00:00</td>\n",
|
| 270 |
+
" <td>Will Apple announce the release of a new M4 ch...</td>\n",
|
| 271 |
+
" <td>CLOSED</td>\n",
|
| 272 |
+
" <td>0.682360</td>\n",
|
| 273 |
+
" <td>0</td>\n",
|
| 274 |
+
" <td>0.013647</td>\n",
|
| 275 |
+
" <td>0.889368</td>\n",
|
| 276 |
+
" <td>0</td>\n",
|
| 277 |
+
" <td>False</td>\n",
|
| 278 |
+
" <td>True</td>\n",
|
| 279 |
+
" <td>0.889368</td>\n",
|
| 280 |
+
" <td>True</td>\n",
|
| 281 |
+
" <td>0.889368</td>\n",
|
| 282 |
+
" <td>0</td>\n",
|
| 283 |
+
" <td>0.0</td>\n",
|
| 284 |
+
" <td>0.193360</td>\n",
|
| 285 |
+
" <td>0.277813</td>\n",
|
| 286 |
+
" </tr>\n",
|
| 287 |
+
" <tr>\n",
|
| 288 |
+
" <th>1</th>\n",
|
| 289 |
+
" <td>0x034c4ad84f7ac6638bf19300d5bbe7d9b981e736</td>\n",
|
| 290 |
+
" <td>0x017947579ab51313c31fe1cc562c0f1726ec09c90x03...</td>\n",
|
| 291 |
+
" <td>2024-05-21 04:26:40+00:00</td>\n",
|
| 292 |
+
" <td>Will Google's Pixel 9 lineup be officially rel...</td>\n",
|
| 293 |
+
" <td>CLOSED</td>\n",
|
| 294 |
+
" <td>0.732158</td>\n",
|
| 295 |
+
" <td>1</td>\n",
|
| 296 |
+
" <td>0.014643</td>\n",
|
| 297 |
+
" <td>1.120798</td>\n",
|
| 298 |
+
" <td>1</td>\n",
|
| 299 |
+
" <td>False</td>\n",
|
| 300 |
+
" <td>True</td>\n",
|
| 301 |
+
" <td>1.120798</td>\n",
|
| 302 |
+
" <td>True</td>\n",
|
| 303 |
+
" <td>1.120798</td>\n",
|
| 304 |
+
" <td>0</td>\n",
|
| 305 |
+
" <td>0.0</td>\n",
|
| 306 |
+
" <td>0.373997</td>\n",
|
| 307 |
+
" <td>0.500799</td>\n",
|
| 308 |
+
" </tr>\n",
|
| 309 |
+
" <tr>\n",
|
| 310 |
+
" <th>2</th>\n",
|
| 311 |
+
" <td>0x034c4ad84f7ac6638bf19300d5bbe7d9b981e736</td>\n",
|
| 312 |
+
" <td>0x0290d432108f22fdc91e6677b1436e7bc702bced0x03...</td>\n",
|
| 313 |
+
" <td>2024-05-09 08:26:30+00:00</td>\n",
|
| 314 |
+
" <td>Will the ICC take legal action against Israel ...</td>\n",
|
| 315 |
+
" <td>CLOSED</td>\n",
|
| 316 |
+
" <td>1.246551</td>\n",
|
| 317 |
+
" <td>0</td>\n",
|
| 318 |
+
" <td>0.024931</td>\n",
|
| 319 |
+
" <td>2.505972</td>\n",
|
| 320 |
+
" <td>0</td>\n",
|
| 321 |
+
" <td>False</td>\n",
|
| 322 |
+
" <td>True</td>\n",
|
| 323 |
+
" <td>2.505972</td>\n",
|
| 324 |
+
" <td>True</td>\n",
|
| 325 |
+
" <td>2.505972</td>\n",
|
| 326 |
+
" <td>0</td>\n",
|
| 327 |
+
" <td>0.0</td>\n",
|
| 328 |
+
" <td>1.234490</td>\n",
|
| 329 |
+
" <td>0.970906</td>\n",
|
| 330 |
+
" </tr>\n",
|
| 331 |
+
" <tr>\n",
|
| 332 |
+
" <th>3</th>\n",
|
| 333 |
+
" <td>0x034c4ad84f7ac6638bf19300d5bbe7d9b981e736</td>\n",
|
| 334 |
+
" <td>0x02c244eef143b16254f3d6a444c2e44d35a175590x03...</td>\n",
|
| 335 |
+
" <td>2024-05-04 04:24:20+00:00</td>\n",
|
| 336 |
+
" <td>Will Trent Staggs win the Senatorial race to r...</td>\n",
|
| 337 |
+
" <td>CLOSED</td>\n",
|
| 338 |
+
" <td>1.219659</td>\n",
|
| 339 |
+
" <td>0</td>\n",
|
| 340 |
+
" <td>0.024393</td>\n",
|
| 341 |
+
" <td>2.948666</td>\n",
|
| 342 |
+
" <td>1</td>\n",
|
| 343 |
+
" <td>False</td>\n",
|
| 344 |
+
" <td>False</td>\n",
|
| 345 |
+
" <td>0.000000</td>\n",
|
| 346 |
+
" <td>True</td>\n",
|
| 347 |
+
" <td>0.000000</td>\n",
|
| 348 |
+
" <td>0</td>\n",
|
| 349 |
+
" <td>0.0</td>\n",
|
| 350 |
+
" <td>-1.244052</td>\n",
|
| 351 |
+
" <td>-1.000000</td>\n",
|
| 352 |
+
" </tr>\n",
|
| 353 |
+
" <tr>\n",
|
| 354 |
+
" <th>4</th>\n",
|
| 355 |
+
" <td>0x034c4ad84f7ac6638bf19300d5bbe7d9b981e736</td>\n",
|
| 356 |
+
" <td>0x0518764fb0684f3156c200ae78d4214d19d8b9530x03...</td>\n",
|
| 357 |
+
" <td>2024-05-19 04:22:50+00:00</td>\n",
|
| 358 |
+
" <td>Will OpenAI release another model update by 20...</td>\n",
|
| 359 |
+
" <td>CLOSED</td>\n",
|
| 360 |
+
" <td>1.203097</td>\n",
|
| 361 |
+
" <td>1</td>\n",
|
| 362 |
+
" <td>0.024062</td>\n",
|
| 363 |
+
" <td>3.143667</td>\n",
|
| 364 |
+
" <td>0</td>\n",
|
| 365 |
+
" <td>False</td>\n",
|
| 366 |
+
" <td>False</td>\n",
|
| 367 |
+
" <td>0.000000</td>\n",
|
| 368 |
+
" <td>True</td>\n",
|
| 369 |
+
" <td>0.000000</td>\n",
|
| 370 |
+
" <td>0</td>\n",
|
| 371 |
+
" <td>0.0</td>\n",
|
| 372 |
+
" <td>-1.227159</td>\n",
|
| 373 |
+
" <td>-1.000000</td>\n",
|
| 374 |
+
" </tr>\n",
|
| 375 |
+
" </tbody>\n",
|
| 376 |
+
"</table>\n",
|
| 377 |
+
"</div>"
|
| 378 |
+
],
|
| 379 |
+
"text/plain": [
|
| 380 |
+
" trader_address \\\n",
|
| 381 |
+
"0 0x034c4ad84f7ac6638bf19300d5bbe7d9b981e736 \n",
|
| 382 |
+
"1 0x034c4ad84f7ac6638bf19300d5bbe7d9b981e736 \n",
|
| 383 |
+
"2 0x034c4ad84f7ac6638bf19300d5bbe7d9b981e736 \n",
|
| 384 |
+
"3 0x034c4ad84f7ac6638bf19300d5bbe7d9b981e736 \n",
|
| 385 |
+
"4 0x034c4ad84f7ac6638bf19300d5bbe7d9b981e736 \n",
|
| 386 |
+
"\n",
|
| 387 |
+
" trade_id \\\n",
|
| 388 |
+
"0 0x005e3f7a90585acbec807425a750fbba1d0c2b5c0x03... \n",
|
| 389 |
+
"1 0x017947579ab51313c31fe1cc562c0f1726ec09c90x03... \n",
|
| 390 |
+
"2 0x0290d432108f22fdc91e6677b1436e7bc702bced0x03... \n",
|
| 391 |
+
"3 0x02c244eef143b16254f3d6a444c2e44d35a175590x03... \n",
|
| 392 |
+
"4 0x0518764fb0684f3156c200ae78d4214d19d8b9530x03... \n",
|
| 393 |
+
"\n",
|
| 394 |
+
" creation_timestamp \\\n",
|
| 395 |
+
"0 2024-05-12 04:26:35+00:00 \n",
|
| 396 |
+
"1 2024-05-21 04:26:40+00:00 \n",
|
| 397 |
+
"2 2024-05-09 08:26:30+00:00 \n",
|
| 398 |
+
"3 2024-05-04 04:24:20+00:00 \n",
|
| 399 |
+
"4 2024-05-19 04:22:50+00:00 \n",
|
| 400 |
+
"\n",
|
| 401 |
+
" title market_status \\\n",
|
| 402 |
+
"0 Will Apple announce the release of a new M4 ch... CLOSED \n",
|
| 403 |
+
"1 Will Google's Pixel 9 lineup be officially rel... CLOSED \n",
|
| 404 |
+
"2 Will the ICC take legal action against Israel ... CLOSED \n",
|
| 405 |
+
"3 Will Trent Staggs win the Senatorial race to r... CLOSED \n",
|
| 406 |
+
"4 Will OpenAI release another model update by 20... CLOSED \n",
|
| 407 |
+
"\n",
|
| 408 |
+
" collateral_amount outcome_index trade_fee_amount outcomes_tokens_traded \\\n",
|
| 409 |
+
"0 0.682360 0 0.013647 0.889368 \n",
|
| 410 |
+
"1 0.732158 1 0.014643 1.120798 \n",
|
| 411 |
+
"2 1.246551 0 0.024931 2.505972 \n",
|
| 412 |
+
"3 1.219659 0 0.024393 2.948666 \n",
|
| 413 |
+
"4 1.203097 1 0.024062 3.143667 \n",
|
| 414 |
+
"\n",
|
| 415 |
+
" current_answer is_invalid winning_trade earnings redeemed \\\n",
|
| 416 |
+
"0 0 False True 0.889368 True \n",
|
| 417 |
+
"1 1 False True 1.120798 True \n",
|
| 418 |
+
"2 0 False True 2.505972 True \n",
|
| 419 |
+
"3 1 False False 0.000000 True \n",
|
| 420 |
+
"4 0 False False 0.000000 True \n",
|
| 421 |
+
"\n",
|
| 422 |
+
" redeemed_amount num_mech_calls mech_fee_amount net_earnings roi \n",
|
| 423 |
+
"0 0.889368 0 0.0 0.193360 0.277813 \n",
|
| 424 |
+
"1 1.120798 0 0.0 0.373997 0.500799 \n",
|
| 425 |
+
"2 2.505972 0 0.0 1.234490 0.970906 \n",
|
| 426 |
+
"3 0.000000 0 0.0 -1.244052 -1.000000 \n",
|
| 427 |
+
"4 0.000000 0 0.0 -1.227159 -1.000000 "
|
| 428 |
+
]
|
| 429 |
+
},
|
| 430 |
+
"execution_count": 9,
|
| 431 |
+
"metadata": {},
|
| 432 |
+
"output_type": "execute_result"
|
| 433 |
+
}
|
| 434 |
+
],
|
| 435 |
+
"source": [
|
| 436 |
+
"all_trades.head()"
|
| 437 |
+
]
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"cell_type": "code",
|
| 441 |
+
"execution_count": 10,
|
| 442 |
+
"metadata": {},
|
| 443 |
+
"outputs": [
|
| 444 |
+
{
|
| 445 |
+
"data": {
|
| 446 |
+
"text/plain": [
|
| 447 |
+
"winning_trade\n",
|
| 448 |
+
"False 14574\n",
|
| 449 |
+
"True 13133\n",
|
| 450 |
+
"Name: count, dtype: int64"
|
| 451 |
+
]
|
| 452 |
+
},
|
| 453 |
+
"execution_count": 10,
|
| 454 |
+
"metadata": {},
|
| 455 |
+
"output_type": "execute_result"
|
| 456 |
+
}
|
| 457 |
+
],
|
| 458 |
+
"source": [
|
| 459 |
+
"all_trades.winning_trade.value_counts()"
|
| 460 |
+
]
|
| 461 |
+
},
|
| 462 |
+
{
|
| 463 |
+
"cell_type": "code",
|
| 464 |
+
"execution_count": 12,
|
| 465 |
+
"metadata": {},
|
| 466 |
+
"outputs": [],
|
| 467 |
+
"source": [
|
| 468 |
+
"all_trades[\"creation_timestamp\"] = pd.to_datetime(all_trades[\"creation_timestamp\"])"
|
| 469 |
+
]
|
| 470 |
+
},
|
| 471 |
+
{
|
| 472 |
+
"cell_type": "code",
|
| 473 |
+
"execution_count": 23,
|
| 474 |
+
"metadata": {},
|
| 475 |
+
"outputs": [
|
| 476 |
+
{
|
| 477 |
+
"data": {
|
| 478 |
+
"text/plain": [
|
| 479 |
+
"current_answer\n",
|
| 480 |
+
" 1 13016\n",
|
| 481 |
+
" 0 10814\n",
|
| 482 |
+
"-1 3877\n",
|
| 483 |
+
"Name: count, dtype: int64"
|
| 484 |
+
]
|
| 485 |
+
},
|
| 486 |
+
"execution_count": 23,
|
| 487 |
+
"metadata": {},
|
| 488 |
+
"output_type": "execute_result"
|
| 489 |
+
}
|
| 490 |
+
],
|
| 491 |
+
"source": [
|
| 492 |
+
"all_trades.current_answer.value_counts()"
|
| 493 |
+
]
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"cell_type": "code",
|
| 497 |
+
"execution_count": 38,
|
| 498 |
+
"metadata": {},
|
| 499 |
+
"outputs": [
|
| 500 |
+
{
|
| 501 |
+
"data": {
|
| 502 |
+
"text/plain": [
|
| 503 |
+
"203"
|
| 504 |
+
]
|
| 505 |
+
},
|
| 506 |
+
"execution_count": 38,
|
| 507 |
+
"metadata": {},
|
| 508 |
+
"output_type": "execute_result"
|
| 509 |
+
}
|
| 510 |
+
],
|
| 511 |
+
"source": [
|
| 512 |
+
"len(list(all_trades.trader_address.unique()))"
|
| 513 |
+
]
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"cell_type": "code",
|
| 517 |
+
"execution_count": 25,
|
| 518 |
+
"metadata": {},
|
| 519 |
+
"outputs": [
|
| 520 |
+
{
|
| 521 |
+
"data": {
|
| 522 |
+
"text/plain": [
|
| 523 |
+
"27707"
|
| 524 |
+
]
|
| 525 |
+
},
|
| 526 |
+
"execution_count": 25,
|
| 527 |
+
"metadata": {},
|
| 528 |
+
"output_type": "execute_result"
|
| 529 |
+
}
|
| 530 |
+
],
|
| 531 |
+
"source": [
|
| 532 |
+
"len(all_trades)"
|
| 533 |
+
]
|
| 534 |
+
},
|
| 535 |
+
{
|
| 536 |
+
"cell_type": "code",
|
| 537 |
+
"execution_count": 13,
|
| 538 |
+
"metadata": {},
|
| 539 |
+
"outputs": [
|
| 540 |
+
{
|
| 541 |
+
"name": "stderr",
|
| 542 |
+
"output_type": "stream",
|
| 543 |
+
"text": [
|
| 544 |
+
"/var/folders/gp/02mb1d514ng739czlxw1lhh00000gn/T/ipykernel_70112/183699308.py:1: UserWarning: Converting to PeriodArray/Index representation will drop timezone information.\n",
|
| 545 |
+
" all_trades['month_year'] = all_trades['creation_timestamp'].dt.to_period('M').astype(str)\n",
|
| 546 |
+
"/var/folders/gp/02mb1d514ng739czlxw1lhh00000gn/T/ipykernel_70112/183699308.py:2: UserWarning: Converting to PeriodArray/Index representation will drop timezone information.\n",
|
| 547 |
+
" all_trades['month_year_week'] = all_trades['creation_timestamp'].dt.to_period('W').astype(str)\n"
|
| 548 |
+
]
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"data": {
|
| 552 |
+
"text/plain": [
|
| 553 |
+
"winning_trade\n",
|
| 554 |
+
"0 14574\n",
|
| 555 |
+
"1 13133\n",
|
| 556 |
+
"Name: count, dtype: int64"
|
| 557 |
+
]
|
| 558 |
+
},
|
| 559 |
+
"execution_count": 13,
|
| 560 |
+
"metadata": {},
|
| 561 |
+
"output_type": "execute_result"
|
| 562 |
+
}
|
| 563 |
+
],
|
| 564 |
+
"source": [
|
| 565 |
+
"all_trades['month_year'] = all_trades['creation_timestamp'].dt.to_period('M').astype(str)\n",
|
| 566 |
+
"all_trades['month_year_week'] = all_trades['creation_timestamp'].dt.to_period('W').astype(str)\n",
|
| 567 |
+
"all_trades['winning_trade'] = all_trades['winning_trade'].astype(int)\n",
|
| 568 |
+
"all_trades.winning_trade.value_counts()"
|
| 569 |
+
]
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"cell_type": "code",
|
| 573 |
+
"execution_count": 14,
|
| 574 |
+
"metadata": {},
|
| 575 |
+
"outputs": [
|
| 576 |
+
{
|
| 577 |
+
"data": {
|
| 578 |
+
"text/html": [
|
| 579 |
+
"<div>\n",
|
| 580 |
+
"<style scoped>\n",
|
| 581 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 582 |
+
" vertical-align: middle;\n",
|
| 583 |
+
" }\n",
|
| 584 |
+
"\n",
|
| 585 |
+
" .dataframe tbody tr th {\n",
|
| 586 |
+
" vertical-align: top;\n",
|
| 587 |
+
" }\n",
|
| 588 |
+
"\n",
|
| 589 |
+
" .dataframe thead th {\n",
|
| 590 |
+
" text-align: right;\n",
|
| 591 |
+
" }\n",
|
| 592 |
+
"</style>\n",
|
| 593 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 594 |
+
" <thead>\n",
|
| 595 |
+
" <tr style=\"text-align: right;\">\n",
|
| 596 |
+
" <th></th>\n",
|
| 597 |
+
" <th>month_year_week</th>\n",
|
| 598 |
+
" <th>winning_trade</th>\n",
|
| 599 |
+
" </tr>\n",
|
| 600 |
+
" </thead>\n",
|
| 601 |
+
" <tbody>\n",
|
| 602 |
+
" <tr>\n",
|
| 603 |
+
" <th>0</th>\n",
|
| 604 |
+
" <td>2024-04-22/2024-04-28</td>\n",
|
| 605 |
+
" <td>60.465116</td>\n",
|
| 606 |
+
" </tr>\n",
|
| 607 |
+
" <tr>\n",
|
| 608 |
+
" <th>1</th>\n",
|
| 609 |
+
" <td>2024-04-29/2024-05-05</td>\n",
|
| 610 |
+
" <td>53.887043</td>\n",
|
| 611 |
+
" </tr>\n",
|
| 612 |
+
" <tr>\n",
|
| 613 |
+
" <th>2</th>\n",
|
| 614 |
+
" <td>2024-05-06/2024-05-12</td>\n",
|
| 615 |
+
" <td>49.626201</td>\n",
|
| 616 |
+
" </tr>\n",
|
| 617 |
+
" <tr>\n",
|
| 618 |
+
" <th>3</th>\n",
|
| 619 |
+
" <td>2024-05-13/2024-05-19</td>\n",
|
| 620 |
+
" <td>47.931617</td>\n",
|
| 621 |
+
" </tr>\n",
|
| 622 |
+
" <tr>\n",
|
| 623 |
+
" <th>4</th>\n",
|
| 624 |
+
" <td>2024-05-20/2024-05-26</td>\n",
|
| 625 |
+
" <td>46.209810</td>\n",
|
| 626 |
+
" </tr>\n",
|
| 627 |
+
" <tr>\n",
|
| 628 |
+
" <th>5</th>\n",
|
| 629 |
+
" <td>2024-05-27/2024-06-02</td>\n",
|
| 630 |
+
" <td>41.855369</td>\n",
|
| 631 |
+
" </tr>\n",
|
| 632 |
+
" <tr>\n",
|
| 633 |
+
" <th>6</th>\n",
|
| 634 |
+
" <td>2024-06-03/2024-06-09</td>\n",
|
| 635 |
+
" <td>43.714888</td>\n",
|
| 636 |
+
" </tr>\n",
|
| 637 |
+
" <tr>\n",
|
| 638 |
+
" <th>7</th>\n",
|
| 639 |
+
" <td>2024-06-10/2024-06-16</td>\n",
|
| 640 |
+
" <td>46.697039</td>\n",
|
| 641 |
+
" </tr>\n",
|
| 642 |
+
" <tr>\n",
|
| 643 |
+
" <th>8</th>\n",
|
| 644 |
+
" <td>2024-06-17/2024-06-23</td>\n",
|
| 645 |
+
" <td>52.762120</td>\n",
|
| 646 |
+
" </tr>\n",
|
| 647 |
+
" </tbody>\n",
|
| 648 |
+
"</table>\n",
|
| 649 |
+
"</div>"
|
| 650 |
+
],
|
| 651 |
+
"text/plain": [
|
| 652 |
+
" month_year_week winning_trade\n",
|
| 653 |
+
"0 2024-04-22/2024-04-28 60.465116\n",
|
| 654 |
+
"1 2024-04-29/2024-05-05 53.887043\n",
|
| 655 |
+
"2 2024-05-06/2024-05-12 49.626201\n",
|
| 656 |
+
"3 2024-05-13/2024-05-19 47.931617\n",
|
| 657 |
+
"4 2024-05-20/2024-05-26 46.209810\n",
|
| 658 |
+
"5 2024-05-27/2024-06-02 41.855369\n",
|
| 659 |
+
"6 2024-06-03/2024-06-09 43.714888\n",
|
| 660 |
+
"7 2024-06-10/2024-06-16 46.697039\n",
|
| 661 |
+
"8 2024-06-17/2024-06-23 52.762120"
|
| 662 |
+
]
|
| 663 |
+
},
|
| 664 |
+
"execution_count": 14,
|
| 665 |
+
"metadata": {},
|
| 666 |
+
"output_type": "execute_result"
|
| 667 |
+
}
|
| 668 |
+
],
|
| 669 |
+
"source": [
|
| 670 |
+
"winning_trades = all_trades.groupby(['month_year_week'])['winning_trade'].sum() / all_trades.groupby(['month_year_week'])['winning_trade'].count() * 100\n",
|
| 671 |
+
"# winning_trades is a series, give it a dataframe\n",
|
| 672 |
+
"winning_trades = winning_trades.reset_index()\n",
|
| 673 |
+
"winning_trades.columns = winning_trades.columns.astype(str)\n",
|
| 674 |
+
"winning_trades.columns = ['month_year_week', 'winning_trade']\n",
|
| 675 |
+
"winning_trades"
|
| 676 |
+
]
|
| 677 |
+
},
|
| 678 |
+
{
|
| 679 |
+
"cell_type": "code",
|
| 680 |
+
"execution_count": 28,
|
| 681 |
+
"metadata": {},
|
| 682 |
+
"outputs": [
|
| 683 |
+
{
|
| 684 |
+
"data": {
|
| 685 |
+
"text/html": [
|
| 686 |
+
"<div>\n",
|
| 687 |
+
"<style scoped>\n",
|
| 688 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 689 |
+
" vertical-align: middle;\n",
|
| 690 |
+
" }\n",
|
| 691 |
+
"\n",
|
| 692 |
+
" .dataframe tbody tr th {\n",
|
| 693 |
+
" vertical-align: top;\n",
|
| 694 |
+
" }\n",
|
| 695 |
+
"\n",
|
| 696 |
+
" .dataframe thead th {\n",
|
| 697 |
+
" text-align: right;\n",
|
| 698 |
+
" }\n",
|
| 699 |
+
"</style>\n",
|
| 700 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 701 |
+
" <thead>\n",
|
| 702 |
+
" <tr style=\"text-align: right;\">\n",
|
| 703 |
+
" <th></th>\n",
|
| 704 |
+
" <th>month_year_week</th>\n",
|
| 705 |
+
" <th>winning_trade</th>\n",
|
| 706 |
+
" </tr>\n",
|
| 707 |
+
" </thead>\n",
|
| 708 |
+
" <tbody>\n",
|
| 709 |
+
" <tr>\n",
|
| 710 |
+
" <th>6</th>\n",
|
| 711 |
+
" <td>2024-06-03/2024-06-09</td>\n",
|
| 712 |
+
" <td>43.714888</td>\n",
|
| 713 |
+
" </tr>\n",
|
| 714 |
+
" </tbody>\n",
|
| 715 |
+
"</table>\n",
|
| 716 |
+
"</div>"
|
| 717 |
+
],
|
| 718 |
+
"text/plain": [
|
| 719 |
+
" month_year_week winning_trade\n",
|
| 720 |
+
"6 2024-06-03/2024-06-09 43.714888"
|
| 721 |
+
]
|
| 722 |
+
},
|
| 723 |
+
"execution_count": 28,
|
| 724 |
+
"metadata": {},
|
| 725 |
+
"output_type": "execute_result"
|
| 726 |
+
}
|
| 727 |
+
],
|
| 728 |
+
"source": [
|
| 729 |
+
"that_week = winning_trades[winning_trades[\"month_year_week\"]==\"2024-06-03/2024-06-09\"]\n",
|
| 730 |
+
"that_week"
|
| 731 |
+
]
|
| 732 |
+
},
|
| 733 |
+
{
|
| 734 |
+
"cell_type": "code",
|
| 735 |
+
"execution_count": 15,
|
| 736 |
+
"metadata": {},
|
| 737 |
+
"outputs": [
|
| 738 |
+
{
|
| 739 |
+
"data": {
|
| 740 |
+
"text/html": [
|
| 741 |
+
"<div>\n",
|
| 742 |
+
"<style scoped>\n",
|
| 743 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 744 |
+
" vertical-align: middle;\n",
|
| 745 |
+
" }\n",
|
| 746 |
+
"\n",
|
| 747 |
+
" .dataframe tbody tr th {\n",
|
| 748 |
+
" vertical-align: top;\n",
|
| 749 |
+
" }\n",
|
| 750 |
+
"\n",
|
| 751 |
+
" .dataframe thead th {\n",
|
| 752 |
+
" text-align: right;\n",
|
| 753 |
+
" }\n",
|
| 754 |
+
"</style>\n",
|
| 755 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 756 |
+
" <thead>\n",
|
| 757 |
+
" <tr style=\"text-align: right;\">\n",
|
| 758 |
+
" <th></th>\n",
|
| 759 |
+
" <th>month_year_week</th>\n",
|
| 760 |
+
" <th>sum</th>\n",
|
| 761 |
+
" <th>count</th>\n",
|
| 762 |
+
" </tr>\n",
|
| 763 |
+
" </thead>\n",
|
| 764 |
+
" <tbody>\n",
|
| 765 |
+
" <tr>\n",
|
| 766 |
+
" <th>0</th>\n",
|
| 767 |
+
" <td>2024-04-22/2024-04-28</td>\n",
|
| 768 |
+
" <td>26</td>\n",
|
| 769 |
+
" <td>43</td>\n",
|
| 770 |
+
" </tr>\n",
|
| 771 |
+
" <tr>\n",
|
| 772 |
+
" <th>1</th>\n",
|
| 773 |
+
" <td>2024-04-29/2024-05-05</td>\n",
|
| 774 |
+
" <td>1622</td>\n",
|
| 775 |
+
" <td>3010</td>\n",
|
| 776 |
+
" </tr>\n",
|
| 777 |
+
" <tr>\n",
|
| 778 |
+
" <th>2</th>\n",
|
| 779 |
+
" <td>2024-05-06/2024-05-12</td>\n",
|
| 780 |
+
" <td>2788</td>\n",
|
| 781 |
+
" <td>5618</td>\n",
|
| 782 |
+
" </tr>\n",
|
| 783 |
+
" <tr>\n",
|
| 784 |
+
" <th>3</th>\n",
|
| 785 |
+
" <td>2024-05-13/2024-05-19</td>\n",
|
| 786 |
+
" <td>2271</td>\n",
|
| 787 |
+
" <td>4738</td>\n",
|
| 788 |
+
" </tr>\n",
|
| 789 |
+
" <tr>\n",
|
| 790 |
+
" <th>4</th>\n",
|
| 791 |
+
" <td>2024-05-20/2024-05-26</td>\n",
|
| 792 |
+
" <td>1969</td>\n",
|
| 793 |
+
" <td>4261</td>\n",
|
| 794 |
+
" </tr>\n",
|
| 795 |
+
" <tr>\n",
|
| 796 |
+
" <th>5</th>\n",
|
| 797 |
+
" <td>2024-05-27/2024-06-02</td>\n",
|
| 798 |
+
" <td>1719</td>\n",
|
| 799 |
+
" <td>4107</td>\n",
|
| 800 |
+
" </tr>\n",
|
| 801 |
+
" <tr>\n",
|
| 802 |
+
" <th>6</th>\n",
|
| 803 |
+
" <td>2024-06-03/2024-06-09</td>\n",
|
| 804 |
+
" <td>1245</td>\n",
|
| 805 |
+
" <td>2848</td>\n",
|
| 806 |
+
" </tr>\n",
|
| 807 |
+
" <tr>\n",
|
| 808 |
+
" <th>7</th>\n",
|
| 809 |
+
" <td>2024-06-10/2024-06-16</td>\n",
|
| 810 |
+
" <td>1025</td>\n",
|
| 811 |
+
" <td>2195</td>\n",
|
| 812 |
+
" </tr>\n",
|
| 813 |
+
" <tr>\n",
|
| 814 |
+
" <th>8</th>\n",
|
| 815 |
+
" <td>2024-06-17/2024-06-23</td>\n",
|
| 816 |
+
" <td>468</td>\n",
|
| 817 |
+
" <td>887</td>\n",
|
| 818 |
+
" </tr>\n",
|
| 819 |
+
" </tbody>\n",
|
| 820 |
+
"</table>\n",
|
| 821 |
+
"</div>"
|
| 822 |
+
],
|
| 823 |
+
"text/plain": [
|
| 824 |
+
" month_year_week sum count\n",
|
| 825 |
+
"0 2024-04-22/2024-04-28 26 43\n",
|
| 826 |
+
"1 2024-04-29/2024-05-05 1622 3010\n",
|
| 827 |
+
"2 2024-05-06/2024-05-12 2788 5618\n",
|
| 828 |
+
"3 2024-05-13/2024-05-19 2271 4738\n",
|
| 829 |
+
"4 2024-05-20/2024-05-26 1969 4261\n",
|
| 830 |
+
"5 2024-05-27/2024-06-02 1719 4107\n",
|
| 831 |
+
"6 2024-06-03/2024-06-09 1245 2848\n",
|
| 832 |
+
"7 2024-06-10/2024-06-16 1025 2195\n",
|
| 833 |
+
"8 2024-06-17/2024-06-23 468 887"
|
| 834 |
+
]
|
| 835 |
+
},
|
| 836 |
+
"execution_count": 15,
|
| 837 |
+
"metadata": {},
|
| 838 |
+
"output_type": "execute_result"
|
| 839 |
+
}
|
| 840 |
+
],
|
| 841 |
+
"source": [
|
| 842 |
+
"winning_trades2 = all_trades.groupby(['month_year_week'])['winning_trade'].agg([\"sum\",\"count\"]).reset_index()\n",
|
| 843 |
+
"winning_trades2"
|
| 844 |
+
]
|
| 845 |
+
},
|
| 846 |
+
{
|
| 847 |
+
"cell_type": "code",
|
| 848 |
+
"execution_count": 29,
|
| 849 |
+
"metadata": {},
|
| 850 |
+
"outputs": [
|
| 851 |
+
{
|
| 852 |
+
"data": {
|
| 853 |
+
"text/html": [
|
| 854 |
+
"<div>\n",
|
| 855 |
+
"<style scoped>\n",
|
| 856 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 857 |
+
" vertical-align: middle;\n",
|
| 858 |
+
" }\n",
|
| 859 |
+
"\n",
|
| 860 |
+
" .dataframe tbody tr th {\n",
|
| 861 |
+
" vertical-align: top;\n",
|
| 862 |
+
" }\n",
|
| 863 |
+
"\n",
|
| 864 |
+
" .dataframe thead th {\n",
|
| 865 |
+
" text-align: right;\n",
|
| 866 |
+
" }\n",
|
| 867 |
+
"</style>\n",
|
| 868 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 869 |
+
" <thead>\n",
|
| 870 |
+
" <tr style=\"text-align: right;\">\n",
|
| 871 |
+
" <th></th>\n",
|
| 872 |
+
" <th>month_year_week</th>\n",
|
| 873 |
+
" <th>sum</th>\n",
|
| 874 |
+
" <th>count</th>\n",
|
| 875 |
+
" <th>winning_trade</th>\n",
|
| 876 |
+
" </tr>\n",
|
| 877 |
+
" </thead>\n",
|
| 878 |
+
" <tbody>\n",
|
| 879 |
+
" <tr>\n",
|
| 880 |
+
" <th>6</th>\n",
|
| 881 |
+
" <td>2024-06-03/2024-06-09</td>\n",
|
| 882 |
+
" <td>1245</td>\n",
|
| 883 |
+
" <td>2848</td>\n",
|
| 884 |
+
" <td>43.714888</td>\n",
|
| 885 |
+
" </tr>\n",
|
| 886 |
+
" </tbody>\n",
|
| 887 |
+
"</table>\n",
|
| 888 |
+
"</div>"
|
| 889 |
+
],
|
| 890 |
+
"text/plain": [
|
| 891 |
+
" month_year_week sum count winning_trade\n",
|
| 892 |
+
"6 2024-06-03/2024-06-09 1245 2848 43.714888"
|
| 893 |
+
]
|
| 894 |
+
},
|
| 895 |
+
"execution_count": 29,
|
| 896 |
+
"metadata": {},
|
| 897 |
+
"output_type": "execute_result"
|
| 898 |
+
}
|
| 899 |
+
],
|
| 900 |
+
"source": [
|
| 901 |
+
"that_week = winning_trades2[winning_trades2[\"month_year_week\"]==\"2024-06-03/2024-06-09\"]\n",
|
| 902 |
+
"that_week"
|
| 903 |
+
]
|
| 904 |
+
},
|
| 905 |
+
{
|
| 906 |
+
"cell_type": "code",
|
| 907 |
+
"execution_count": 18,
|
| 908 |
+
"metadata": {},
|
| 909 |
+
"outputs": [],
|
| 910 |
+
"source": [
|
| 911 |
+
"INC_TOOLS = [\n",
|
| 912 |
+
" \"prediction-online\",\n",
|
| 913 |
+
" \"prediction-offline\",\n",
|
| 914 |
+
" \"claude-prediction-online\",\n",
|
| 915 |
+
" \"claude-prediction-offline\",\n",
|
| 916 |
+
" \"prediction-offline-sme\",\n",
|
| 917 |
+
" \"prediction-online-sme\",\n",
|
| 918 |
+
" \"prediction-request-rag\",\n",
|
| 919 |
+
" \"prediction-request-reasoning\",\n",
|
| 920 |
+
" \"prediction-url-cot-claude\",\n",
|
| 921 |
+
" \"prediction-request-rag-claude\",\n",
|
| 922 |
+
" \"prediction-request-reasoning-claude\",\n",
|
| 923 |
+
"]"
|
| 924 |
+
]
|
| 925 |
+
},
|
| 926 |
+
{
|
| 927 |
+
"cell_type": "code",
|
| 928 |
+
"execution_count": 60,
|
| 929 |
+
"metadata": {},
|
| 930 |
+
"outputs": [],
|
| 931 |
+
"source": [
|
| 932 |
+
"tools = pd.read_parquet('../data/tools.parquet')"
|
| 933 |
+
]
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"cell_type": "code",
|
| 937 |
+
"execution_count": 61,
|
| 938 |
+
"metadata": {},
|
| 939 |
+
"outputs": [
|
| 940 |
+
{
|
| 941 |
+
"name": "stdout",
|
| 942 |
+
"output_type": "stream",
|
| 943 |
+
"text": [
|
| 944 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
| 945 |
+
"RangeIndex: 127674 entries, 0 to 127673\n",
|
| 946 |
+
"Data columns (total 22 columns):\n",
|
| 947 |
+
" # Column Non-Null Count Dtype \n",
|
| 948 |
+
"--- ------ -------------- ----- \n",
|
| 949 |
+
" 0 request_id 127674 non-null object \n",
|
| 950 |
+
" 1 request_block 127674 non-null int64 \n",
|
| 951 |
+
" 2 prompt_request 127674 non-null object \n",
|
| 952 |
+
" 3 tool 127674 non-null object \n",
|
| 953 |
+
" 4 nonce 127674 non-null object \n",
|
| 954 |
+
" 5 trader_address 127674 non-null object \n",
|
| 955 |
+
" 6 deliver_block 127674 non-null int64 \n",
|
| 956 |
+
" 7 error 127668 non-null float64\n",
|
| 957 |
+
" 8 error_message 19534 non-null object \n",
|
| 958 |
+
" 9 prompt_response 120607 non-null object \n",
|
| 959 |
+
" 10 mech_address 127674 non-null object \n",
|
| 960 |
+
" 11 p_yes 108134 non-null float64\n",
|
| 961 |
+
" 12 p_no 108134 non-null float64\n",
|
| 962 |
+
" 13 confidence 108134 non-null float64\n",
|
| 963 |
+
" 14 info_utility 108134 non-null float64\n",
|
| 964 |
+
" 15 vote 94137 non-null object \n",
|
| 965 |
+
" 16 win_probability 108134 non-null float64\n",
|
| 966 |
+
" 17 title 118074 non-null object \n",
|
| 967 |
+
" 18 currentAnswer 88330 non-null object \n",
|
| 968 |
+
" 19 request_time 127674 non-null object \n",
|
| 969 |
+
" 20 request_month_year 127674 non-null object \n",
|
| 970 |
+
" 21 request_month_year_week 127674 non-null object \n",
|
| 971 |
+
"dtypes: float64(6), int64(2), object(14)\n",
|
| 972 |
+
"memory usage: 21.4+ MB\n"
|
| 973 |
+
]
|
| 974 |
+
}
|
| 975 |
+
],
|
| 976 |
+
"source": [
|
| 977 |
+
"tools.info()"
|
| 978 |
+
]
|
| 979 |
+
},
|
| 980 |
+
{
|
| 981 |
+
"cell_type": "code",
|
| 982 |
+
"execution_count": 62,
|
| 983 |
+
"metadata": {},
|
| 984 |
+
"outputs": [
|
| 985 |
+
{
|
| 986 |
+
"data": {
|
| 987 |
+
"text/plain": [
|
| 988 |
+
"currentAnswer\n",
|
| 989 |
+
"No 51140\n",
|
| 990 |
+
"Yes 37190\n",
|
| 991 |
+
"Name: count, dtype: int64"
|
| 992 |
+
]
|
| 993 |
+
},
|
| 994 |
+
"execution_count": 62,
|
| 995 |
+
"metadata": {},
|
| 996 |
+
"output_type": "execute_result"
|
| 997 |
+
}
|
| 998 |
+
],
|
| 999 |
+
"source": [
|
| 1000 |
+
"tools.currentAnswer.value_counts()"
|
| 1001 |
+
]
|
| 1002 |
+
},
|
| 1003 |
+
{
|
| 1004 |
+
"cell_type": "code",
|
| 1005 |
+
"execution_count": 26,
|
| 1006 |
+
"metadata": {},
|
| 1007 |
+
"outputs": [
|
| 1008 |
+
{
|
| 1009 |
+
"data": {
|
| 1010 |
+
"text/plain": [
|
| 1011 |
+
"127674"
|
| 1012 |
+
]
|
| 1013 |
+
},
|
| 1014 |
+
"execution_count": 26,
|
| 1015 |
+
"metadata": {},
|
| 1016 |
+
"output_type": "execute_result"
|
| 1017 |
+
}
|
| 1018 |
+
],
|
| 1019 |
+
"source": [
|
| 1020 |
+
"len(tools)"
|
| 1021 |
+
]
|
| 1022 |
+
},
|
| 1023 |
+
{
|
| 1024 |
+
"cell_type": "code",
|
| 1025 |
+
"execution_count": 31,
|
| 1026 |
+
"metadata": {},
|
| 1027 |
+
"outputs": [],
|
| 1028 |
+
"source": [
|
| 1029 |
+
"tools_inc = tools[tools['tool'].isin(INC_TOOLS)]\n",
|
| 1030 |
+
"tools_non_error = tools_inc[tools_inc['error'] != 1]\n",
|
| 1031 |
+
"tools_non_error.loc[:, 'currentAnswer'] = tools_non_error['currentAnswer'].replace({'no': 'No', 'yes': 'Yes'})\n",
|
| 1032 |
+
"tools_non_error = tools_non_error[tools_non_error['currentAnswer'].isin(['Yes', 'No'])]\n",
|
| 1033 |
+
"tools_non_error = tools_non_error[tools_non_error['vote'].isin(['Yes', 'No'])]\n",
|
| 1034 |
+
"tools_non_error['win'] = (tools_non_error['currentAnswer'] == tools_non_error['vote']).astype(int)\n",
|
| 1035 |
+
"tools_non_error.columns = tools_non_error.columns.astype(str)\n",
|
| 1036 |
+
"wins = tools_non_error.groupby(['tool', 'request_month_year_week', 'win']).size().unstack().fillna(0)"
|
| 1037 |
+
]
|
| 1038 |
+
},
|
| 1039 |
+
{
|
| 1040 |
+
"cell_type": "code",
|
| 1041 |
+
"execution_count": 63,
|
| 1042 |
+
"metadata": {},
|
| 1043 |
+
"outputs": [
|
| 1044 |
+
{
|
| 1045 |
+
"data": {
|
| 1046 |
+
"text/html": [
|
| 1047 |
+
"<div>\n",
|
| 1048 |
+
"<style scoped>\n",
|
| 1049 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 1050 |
+
" vertical-align: middle;\n",
|
| 1051 |
+
" }\n",
|
| 1052 |
+
"\n",
|
| 1053 |
+
" .dataframe tbody tr th {\n",
|
| 1054 |
+
" vertical-align: top;\n",
|
| 1055 |
+
" }\n",
|
| 1056 |
+
"\n",
|
| 1057 |
+
" .dataframe thead th {\n",
|
| 1058 |
+
" text-align: right;\n",
|
| 1059 |
+
" }\n",
|
| 1060 |
+
"</style>\n",
|
| 1061 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 1062 |
+
" <thead>\n",
|
| 1063 |
+
" <tr style=\"text-align: right;\">\n",
|
| 1064 |
+
" <th></th>\n",
|
| 1065 |
+
" <th>win</th>\n",
|
| 1066 |
+
" <th>0</th>\n",
|
| 1067 |
+
" <th>1</th>\n",
|
| 1068 |
+
" </tr>\n",
|
| 1069 |
+
" <tr>\n",
|
| 1070 |
+
" <th>tool</th>\n",
|
| 1071 |
+
" <th>request_month_year_week</th>\n",
|
| 1072 |
+
" <th></th>\n",
|
| 1073 |
+
" <th></th>\n",
|
| 1074 |
+
" </tr>\n",
|
| 1075 |
+
" </thead>\n",
|
| 1076 |
+
" <tbody>\n",
|
| 1077 |
+
" <tr>\n",
|
| 1078 |
+
" <th rowspan=\"5\" valign=\"top\">claude-prediction-offline</th>\n",
|
| 1079 |
+
" <th>2024-04-22/2024-04-28</th>\n",
|
| 1080 |
+
" <td>14.0</td>\n",
|
| 1081 |
+
" <td>23.0</td>\n",
|
| 1082 |
+
" </tr>\n",
|
| 1083 |
+
" <tr>\n",
|
| 1084 |
+
" <th>2024-04-29/2024-05-05</th>\n",
|
| 1085 |
+
" <td>34.0</td>\n",
|
| 1086 |
+
" <td>99.0</td>\n",
|
| 1087 |
+
" </tr>\n",
|
| 1088 |
+
" <tr>\n",
|
| 1089 |
+
" <th>2024-05-06/2024-05-12</th>\n",
|
| 1090 |
+
" <td>22.0</td>\n",
|
| 1091 |
+
" <td>34.0</td>\n",
|
| 1092 |
+
" </tr>\n",
|
| 1093 |
+
" <tr>\n",
|
| 1094 |
+
" <th>2024-05-13/2024-05-19</th>\n",
|
| 1095 |
+
" <td>40.0</td>\n",
|
| 1096 |
+
" <td>52.0</td>\n",
|
| 1097 |
+
" </tr>\n",
|
| 1098 |
+
" <tr>\n",
|
| 1099 |
+
" <th>2024-05-20/2024-05-26</th>\n",
|
| 1100 |
+
" <td>18.0</td>\n",
|
| 1101 |
+
" <td>52.0</td>\n",
|
| 1102 |
+
" </tr>\n",
|
| 1103 |
+
" <tr>\n",
|
| 1104 |
+
" <th>...</th>\n",
|
| 1105 |
+
" <th>...</th>\n",
|
| 1106 |
+
" <td>...</td>\n",
|
| 1107 |
+
" <td>...</td>\n",
|
| 1108 |
+
" </tr>\n",
|
| 1109 |
+
" <tr>\n",
|
| 1110 |
+
" <th rowspan=\"5\" valign=\"top\">prediction-url-cot-claude</th>\n",
|
| 1111 |
+
" <th>2024-05-06/2024-05-12</th>\n",
|
| 1112 |
+
" <td>67.0</td>\n",
|
| 1113 |
+
" <td>91.0</td>\n",
|
| 1114 |
+
" </tr>\n",
|
| 1115 |
+
" <tr>\n",
|
| 1116 |
+
" <th>2024-05-13/2024-05-19</th>\n",
|
| 1117 |
+
" <td>28.0</td>\n",
|
| 1118 |
+
" <td>43.0</td>\n",
|
| 1119 |
+
" </tr>\n",
|
| 1120 |
+
" <tr>\n",
|
| 1121 |
+
" <th>2024-05-20/2024-05-26</th>\n",
|
| 1122 |
+
" <td>64.0</td>\n",
|
| 1123 |
+
" <td>145.0</td>\n",
|
| 1124 |
+
" </tr>\n",
|
| 1125 |
+
" <tr>\n",
|
| 1126 |
+
" <th>2024-05-27/2024-06-02</th>\n",
|
| 1127 |
+
" <td>81.0</td>\n",
|
| 1128 |
+
" <td>112.0</td>\n",
|
| 1129 |
+
" </tr>\n",
|
| 1130 |
+
" <tr>\n",
|
| 1131 |
+
" <th>2024-06-03/2024-06-09</th>\n",
|
| 1132 |
+
" <td>7.0</td>\n",
|
| 1133 |
+
" <td>41.0</td>\n",
|
| 1134 |
+
" </tr>\n",
|
| 1135 |
+
" </tbody>\n",
|
| 1136 |
+
"</table>\n",
|
| 1137 |
+
"<p>91 rows × 2 columns</p>\n",
|
| 1138 |
+
"</div>"
|
| 1139 |
+
],
|
| 1140 |
+
"text/plain": [
|
| 1141 |
+
"win 0 1\n",
|
| 1142 |
+
"tool request_month_year_week \n",
|
| 1143 |
+
"claude-prediction-offline 2024-04-22/2024-04-28 14.0 23.0\n",
|
| 1144 |
+
" 2024-04-29/2024-05-05 34.0 99.0\n",
|
| 1145 |
+
" 2024-05-06/2024-05-12 22.0 34.0\n",
|
| 1146 |
+
" 2024-05-13/2024-05-19 40.0 52.0\n",
|
| 1147 |
+
" 2024-05-20/2024-05-26 18.0 52.0\n",
|
| 1148 |
+
"... ... ...\n",
|
| 1149 |
+
"prediction-url-cot-claude 2024-05-06/2024-05-12 67.0 91.0\n",
|
| 1150 |
+
" 2024-05-13/2024-05-19 28.0 43.0\n",
|
| 1151 |
+
" 2024-05-20/2024-05-26 64.0 145.0\n",
|
| 1152 |
+
" 2024-05-27/2024-06-02 81.0 112.0\n",
|
| 1153 |
+
" 2024-06-03/2024-06-09 7.0 41.0\n",
|
| 1154 |
+
"\n",
|
| 1155 |
+
"[91 rows x 2 columns]"
|
| 1156 |
+
]
|
| 1157 |
+
},
|
| 1158 |
+
"execution_count": 63,
|
| 1159 |
+
"metadata": {},
|
| 1160 |
+
"output_type": "execute_result"
|
| 1161 |
+
}
|
| 1162 |
+
],
|
| 1163 |
+
"source": [
|
| 1164 |
+
"wins"
|
| 1165 |
+
]
|
| 1166 |
+
},
|
| 1167 |
+
{
|
| 1168 |
+
"cell_type": "code",
|
| 1169 |
+
"execution_count": 56,
|
| 1170 |
+
"metadata": {},
|
| 1171 |
+
"outputs": [
|
| 1172 |
+
{
|
| 1173 |
+
"data": {
|
| 1174 |
+
"text/plain": [
|
| 1175 |
+
"186"
|
| 1176 |
+
]
|
| 1177 |
+
},
|
| 1178 |
+
"execution_count": 56,
|
| 1179 |
+
"metadata": {},
|
| 1180 |
+
"output_type": "execute_result"
|
| 1181 |
+
}
|
| 1182 |
+
],
|
| 1183 |
+
"source": [
|
| 1184 |
+
"selected_traders = list(tools.trader_address.unique())\n",
|
| 1185 |
+
"len(selected_traders)"
|
| 1186 |
+
]
|
| 1187 |
+
},
|
| 1188 |
+
{
|
| 1189 |
+
"cell_type": "code",
|
| 1190 |
+
"execution_count": 59,
|
| 1191 |
+
"metadata": {},
|
| 1192 |
+
"outputs": [
|
| 1193 |
+
{
|
| 1194 |
+
"data": {
|
| 1195 |
+
"text/plain": [
|
| 1196 |
+
"182"
|
| 1197 |
+
]
|
| 1198 |
+
},
|
| 1199 |
+
"execution_count": 59,
|
| 1200 |
+
"metadata": {},
|
| 1201 |
+
"output_type": "execute_result"
|
| 1202 |
+
}
|
| 1203 |
+
],
|
| 1204 |
+
"source": [
|
| 1205 |
+
"len(list(tools_non_error.trader_address.unique()))"
|
| 1206 |
+
]
|
| 1207 |
+
},
|
| 1208 |
+
{
|
| 1209 |
+
"cell_type": "code",
|
| 1210 |
+
"execution_count": 36,
|
| 1211 |
+
"metadata": {},
|
| 1212 |
+
"outputs": [
|
| 1213 |
+
{
|
| 1214 |
+
"data": {
|
| 1215 |
+
"text/plain": [
|
| 1216 |
+
"10817"
|
| 1217 |
+
]
|
| 1218 |
+
},
|
| 1219 |
+
"execution_count": 36,
|
| 1220 |
+
"metadata": {},
|
| 1221 |
+
"output_type": "execute_result"
|
| 1222 |
+
}
|
| 1223 |
+
],
|
| 1224 |
+
"source": [
|
| 1225 |
+
"len(tools)-len(tools_inc)"
|
| 1226 |
+
]
|
| 1227 |
+
},
|
| 1228 |
+
{
|
| 1229 |
+
"cell_type": "code",
|
| 1230 |
+
"execution_count": 32,
|
| 1231 |
+
"metadata": {},
|
| 1232 |
+
"outputs": [
|
| 1233 |
+
{
|
| 1234 |
+
"data": {
|
| 1235 |
+
"text/plain": [
|
| 1236 |
+
"11778"
|
| 1237 |
+
]
|
| 1238 |
+
},
|
| 1239 |
+
"execution_count": 32,
|
| 1240 |
+
"metadata": {},
|
| 1241 |
+
"output_type": "execute_result"
|
| 1242 |
+
}
|
| 1243 |
+
],
|
| 1244 |
+
"source": [
|
| 1245 |
+
"tools_week = tools_non_error[tools_non_error[\"request_month_year_week\"]==\"2024-06-03/2024-06-09\"]\n",
|
| 1246 |
+
"len(tools_week)"
|
| 1247 |
+
]
|
| 1248 |
+
},
|
| 1249 |
+
{
|
| 1250 |
+
"cell_type": "code",
|
| 1251 |
+
"execution_count": 44,
|
| 1252 |
+
"metadata": {},
|
| 1253 |
+
"outputs": [
|
| 1254 |
+
{
|
| 1255 |
+
"data": {
|
| 1256 |
+
"text/plain": [
|
| 1257 |
+
"0"
|
| 1258 |
+
]
|
| 1259 |
+
},
|
| 1260 |
+
"execution_count": 44,
|
| 1261 |
+
"metadata": {},
|
| 1262 |
+
"output_type": "execute_result"
|
| 1263 |
+
}
|
| 1264 |
+
],
|
| 1265 |
+
"source": [
|
| 1266 |
+
"filtered_trades = all_trades.loc[all_trades[\"trader_address\"].isin(selected_traders)]\n",
|
| 1267 |
+
"len(filtered_trades)"
|
| 1268 |
+
]
|
| 1269 |
+
},
|
| 1270 |
+
{
|
| 1271 |
+
"cell_type": "code",
|
| 1272 |
+
"execution_count": 45,
|
| 1273 |
+
"metadata": {},
|
| 1274 |
+
"outputs": [],
|
| 1275 |
+
"source": [
|
| 1276 |
+
"all_addresses = list(all_trades.trader_address.unique())"
|
| 1277 |
+
]
|
| 1278 |
+
},
|
| 1279 |
+
{
|
| 1280 |
+
"cell_type": "code",
|
| 1281 |
+
"execution_count": 58,
|
| 1282 |
+
"metadata": {},
|
| 1283 |
+
"outputs": [],
|
| 1284 |
+
"source": [
|
| 1285 |
+
"for a in all_addresses:\n",
|
| 1286 |
+
" if a in selected_traders:\n",
|
| 1287 |
+
" print(\"found\")"
|
| 1288 |
+
]
|
| 1289 |
+
},
|
| 1290 |
+
{
|
| 1291 |
+
"cell_type": "code",
|
| 1292 |
+
"execution_count": 57,
|
| 1293 |
+
"metadata": {},
|
| 1294 |
+
"outputs": [],
|
| 1295 |
+
"source": [
|
| 1296 |
+
"for a in selected_traders:\n",
|
| 1297 |
+
" if a in all_addresses:\n",
|
| 1298 |
+
" print(\"found\")"
|
| 1299 |
+
]
|
| 1300 |
+
},
|
| 1301 |
+
{
|
| 1302 |
+
"cell_type": "code",
|
| 1303 |
+
"execution_count": 46,
|
| 1304 |
+
"metadata": {},
|
| 1305 |
+
"outputs": [
|
| 1306 |
+
{
|
| 1307 |
+
"data": {
|
| 1308 |
+
"text/plain": [
|
| 1309 |
+
"0"
|
| 1310 |
+
]
|
| 1311 |
+
},
|
| 1312 |
+
"execution_count": 46,
|
| 1313 |
+
"metadata": {},
|
| 1314 |
+
"output_type": "execute_result"
|
| 1315 |
+
}
|
| 1316 |
+
],
|
| 1317 |
+
"source": [
|
| 1318 |
+
"filtered_tools = tools[tools[\"trader_address\"].isin(all_addresses)]\n",
|
| 1319 |
+
"len(filtered_tools)"
|
| 1320 |
+
]
|
| 1321 |
+
},
|
| 1322 |
+
{
|
| 1323 |
+
"cell_type": "code",
|
| 1324 |
+
"execution_count": 55,
|
| 1325 |
+
"metadata": {},
|
| 1326 |
+
"outputs": [
|
| 1327 |
+
{
|
| 1328 |
+
"data": {
|
| 1329 |
+
"text/plain": [
|
| 1330 |
+
"count 27707.000000\n",
|
| 1331 |
+
"mean 3.912224\n",
|
| 1332 |
+
"std 4.622220\n",
|
| 1333 |
+
"min 0.000000\n",
|
| 1334 |
+
"25% 1.000000\n",
|
| 1335 |
+
"50% 2.000000\n",
|
| 1336 |
+
"75% 5.000000\n",
|
| 1337 |
+
"max 66.000000\n",
|
| 1338 |
+
"Name: num_mech_calls, dtype: float64"
|
| 1339 |
+
]
|
| 1340 |
+
},
|
| 1341 |
+
"execution_count": 55,
|
| 1342 |
+
"metadata": {},
|
| 1343 |
+
"output_type": "execute_result"
|
| 1344 |
+
}
|
| 1345 |
+
],
|
| 1346 |
+
"source": [
|
| 1347 |
+
"all_trades.num_mech_calls.describe()"
|
| 1348 |
+
]
|
| 1349 |
+
}
|
| 1350 |
+
],
|
| 1351 |
+
"metadata": {
|
| 1352 |
+
"kernelspec": {
|
| 1353 |
+
"display_name": "market_creator",
|
| 1354 |
+
"language": "python",
|
| 1355 |
+
"name": "python3"
|
| 1356 |
+
},
|
| 1357 |
+
"language_info": {
|
| 1358 |
+
"codemirror_mode": {
|
| 1359 |
+
"name": "ipython",
|
| 1360 |
+
"version": 3
|
| 1361 |
+
},
|
| 1362 |
+
"file_extension": ".py",
|
| 1363 |
+
"mimetype": "text/x-python",
|
| 1364 |
+
"name": "python",
|
| 1365 |
+
"nbconvert_exporter": "python",
|
| 1366 |
+
"pygments_lexer": "ipython3",
|
| 1367 |
+
"version": "3.12.3"
|
| 1368 |
+
}
|
| 1369 |
+
},
|
| 1370 |
+
"nbformat": 4,
|
| 1371 |
+
"nbformat_minor": 2
|
| 1372 |
+
}
|
scripts/tools.py
CHANGED
|
@@ -529,14 +529,15 @@ def update_tools_accuracy(
|
|
| 529 |
existing_tools = list(tools_acc["tool"].values)
|
| 530 |
for tool in tools_to_update:
|
| 531 |
if tool in existing_tools:
|
| 532 |
-
new_accuracy = acc_info[acc_info["tool"] == tool
|
| 533 |
-
new_volume = acc_info[acc_info["tool"] == tool
|
| 534 |
-
new_min_timeline = acc_info[acc_info["tool"] == tool
|
| 535 |
-
new_max_timeline = acc_info[acc_info["tool"] == tool
|
| 536 |
-
tools_acc[tools_acc["tool"] == tool, "tool_accuracy"] = new_accuracy
|
| 537 |
-
tools_acc[tools_acc["tool"] == tool, "total_requests"] = new_volume
|
| 538 |
-
tools_acc[tools_acc["tool"] == tool, "min"] = new_min_timeline
|
| 539 |
-
tools_acc[tools_acc["tool"] == tool, "max"] = new_max_timeline
|
|
|
|
| 540 |
return tools_acc
|
| 541 |
|
| 542 |
|
|
|
|
| 529 |
existing_tools = list(tools_acc["tool"].values)
|
| 530 |
for tool in tools_to_update:
|
| 531 |
if tool in existing_tools:
|
| 532 |
+
new_accuracy = acc_info[acc_info["tool"] == tool]["tool_accuracy"].values[0]
|
| 533 |
+
new_volume = acc_info[acc_info["tool"] == tool]["total_requests"].values[0]
|
| 534 |
+
new_min_timeline = acc_info[acc_info["tool"] == tool]["min"].values[0]
|
| 535 |
+
new_max_timeline = acc_info[acc_info["tool"] == tool]["max"].values[0]
|
| 536 |
+
tools_acc.loc[tools_acc["tool"] == tool, "tool_accuracy"] = new_accuracy
|
| 537 |
+
tools_acc.loc[tools_acc["tool"] == tool, "total_requests"] = new_volume
|
| 538 |
+
tools_acc.loc[tools_acc["tool"] == tool, "min"] = new_min_timeline
|
| 539 |
+
tools_acc.loc[tools_acc["tool"] == tool, "max"] = new_max_timeline
|
| 540 |
+
print(tools_acc)
|
| 541 |
return tools_acc
|
| 542 |
|
| 543 |
|
tabs/tool_win.py
CHANGED
|
@@ -3,46 +3,59 @@ import gradio as gr
|
|
| 3 |
from typing import List
|
| 4 |
|
| 5 |
|
| 6 |
-
HEIGHT=600
|
| 7 |
-
WIDTH=1000
|
| 8 |
|
| 9 |
|
| 10 |
def get_tool_winning_rate(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
| 11 |
"""Gets the tool winning rate data for the given tools and calculates the winning percentage."""
|
| 12 |
-
tools_inc = tools_df[tools_df[
|
| 13 |
# tools_inc['error'] = tools_inc.apply(set_error, axis=1)
|
| 14 |
-
tools_non_error = tools_inc[tools_inc[
|
| 15 |
-
tools_non_error.loc[:,
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
tools_non_error
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
tools_non_error.columns = tools_non_error.columns.astype(str)
|
| 20 |
-
wins =
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
wins.reset_index(inplace=True)
|
| 23 |
-
wins[
|
| 24 |
wins.columns = wins.columns.astype(str)
|
| 25 |
# Convert request_month_year_week to string and explicitly set type for Altair
|
| 26 |
-
wins[
|
| 27 |
return wins
|
| 28 |
|
| 29 |
|
| 30 |
def get_overall_winning_rate(wins_df: pd.DataFrame) -> pd.DataFrame:
|
| 31 |
"""Gets the overall winning rate data for the given tools and calculates the winning percentage."""
|
| 32 |
-
overall_wins =
|
| 33 |
-
"
|
| 34 |
-
"1":
|
| 35 |
-
"
|
| 36 |
-
|
| 37 |
-
|
| 38 |
return overall_wins
|
| 39 |
|
| 40 |
|
| 41 |
-
def plot_tool_winnings_overall(
|
|
|
|
|
|
|
| 42 |
"""Plots the overall winning rate data for the given tools and calculates the winning percentage."""
|
| 43 |
return gr.BarPlot(
|
| 44 |
-
title="Winning Rate",
|
| 45 |
-
x_title="Date",
|
| 46 |
y_title=winning_selector,
|
| 47 |
show_label=True,
|
| 48 |
interactive=True,
|
|
@@ -52,23 +65,23 @@ def plot_tool_winnings_overall(wins_df: pd.DataFrame, winning_selector: str = "w
|
|
| 52 |
x="request_month_year_week",
|
| 53 |
y=winning_selector,
|
| 54 |
height=HEIGHT,
|
| 55 |
-
width=WIDTH
|
| 56 |
)
|
| 57 |
|
| 58 |
|
| 59 |
def plot_tool_winnings_by_tool(wins_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
| 60 |
"""Plots the winning rate data for the given tool."""
|
| 61 |
return gr.BarPlot(
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
| 3 |
from typing import List
|
| 4 |
|
| 5 |
|
| 6 |
+
HEIGHT = 600
|
| 7 |
+
WIDTH = 1000
|
| 8 |
|
| 9 |
|
| 10 |
def get_tool_winning_rate(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
| 11 |
"""Gets the tool winning rate data for the given tools and calculates the winning percentage."""
|
| 12 |
+
tools_inc = tools_df[tools_df["tool"].isin(inc_tools)]
|
| 13 |
# tools_inc['error'] = tools_inc.apply(set_error, axis=1)
|
| 14 |
+
tools_non_error = tools_inc[tools_inc["error"] != 1]
|
| 15 |
+
tools_non_error.loc[:, "currentAnswer"] = tools_non_error["currentAnswer"].replace(
|
| 16 |
+
{"no": "No", "yes": "Yes"}
|
| 17 |
+
)
|
| 18 |
+
tools_non_error = tools_non_error[
|
| 19 |
+
tools_non_error["currentAnswer"].isin(["Yes", "No"])
|
| 20 |
+
]
|
| 21 |
+
tools_non_error = tools_non_error[tools_non_error["vote"].isin(["Yes", "No"])]
|
| 22 |
+
tools_non_error["win"] = (
|
| 23 |
+
tools_non_error["currentAnswer"] == tools_non_error["vote"]
|
| 24 |
+
).astype(int)
|
| 25 |
tools_non_error.columns = tools_non_error.columns.astype(str)
|
| 26 |
+
wins = (
|
| 27 |
+
tools_non_error.groupby(["tool", "request_month_year_week", "win"])
|
| 28 |
+
.size()
|
| 29 |
+
.unstack()
|
| 30 |
+
.fillna(0)
|
| 31 |
+
)
|
| 32 |
+
wins["win_perc"] = (wins[1] / (wins[0] + wins[1])) * 100
|
| 33 |
wins.reset_index(inplace=True)
|
| 34 |
+
wins["total_request"] = wins[0] + wins[1]
|
| 35 |
wins.columns = wins.columns.astype(str)
|
| 36 |
# Convert request_month_year_week to string and explicitly set type for Altair
|
| 37 |
+
wins["request_month_year_week"] = wins["request_month_year_week"].astype(str)
|
| 38 |
return wins
|
| 39 |
|
| 40 |
|
| 41 |
def get_overall_winning_rate(wins_df: pd.DataFrame) -> pd.DataFrame:
|
| 42 |
"""Gets the overall winning rate data for the given tools and calculates the winning percentage."""
|
| 43 |
+
overall_wins = (
|
| 44 |
+
wins_df.groupby("request_month_year_week")
|
| 45 |
+
.agg({"0": "sum", "1": "sum", "win_perc": "mean", "total_request": "sum"})
|
| 46 |
+
.rename(columns={"0": "losses", "1": "wins"})
|
| 47 |
+
.reset_index()
|
| 48 |
+
)
|
| 49 |
return overall_wins
|
| 50 |
|
| 51 |
|
| 52 |
+
def plot_tool_winnings_overall(
|
| 53 |
+
wins_df: pd.DataFrame, winning_selector: str = "win_perc"
|
| 54 |
+
) -> gr.BarPlot:
|
| 55 |
"""Plots the overall winning rate data for the given tools and calculates the winning percentage."""
|
| 56 |
return gr.BarPlot(
|
| 57 |
+
title="Winning Rate",
|
| 58 |
+
x_title="Date",
|
| 59 |
y_title=winning_selector,
|
| 60 |
show_label=True,
|
| 61 |
interactive=True,
|
|
|
|
| 65 |
x="request_month_year_week",
|
| 66 |
y=winning_selector,
|
| 67 |
height=HEIGHT,
|
| 68 |
+
width=WIDTH,
|
| 69 |
)
|
| 70 |
|
| 71 |
|
| 72 |
def plot_tool_winnings_by_tool(wins_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
| 73 |
"""Plots the winning rate data for the given tool."""
|
| 74 |
return gr.BarPlot(
|
| 75 |
+
title="Winning Rate",
|
| 76 |
+
x_title="Week",
|
| 77 |
+
y_title="Winning Rate",
|
| 78 |
+
x="request_month_year_week",
|
| 79 |
+
y="win_perc",
|
| 80 |
+
value=wins_df[wins_df["tool"] == tool],
|
| 81 |
+
show_label=True,
|
| 82 |
+
interactive=True,
|
| 83 |
+
show_actions_button=True,
|
| 84 |
+
tooltip=["request_month_year_week", "win_perc"],
|
| 85 |
+
height=HEIGHT,
|
| 86 |
+
width=WIDTH,
|
| 87 |
+
)
|