Update app.py
Browse files
app.py
CHANGED
|
@@ -21,7 +21,7 @@ from transformers import (
|
|
| 21 |
|
| 22 |
NUM_EXAMPLES_FOR_FINETUNING = 50 # Constant for the number of examples to use for finetuning
|
| 23 |
TEXT_PIPELINE = None # Global to store the custom R1 text generation pipeline
|
| 24 |
-
COMPARISON_PIPELINE = None
|
| 25 |
|
| 26 |
|
| 27 |
def _load_model_and_tokenizer(model_name: str, subfolder: str = None, quantization_config: BitsAndBytesConfig = None, device_map: str = "auto", trust_remote_code: bool = True) -> tuple[AutoModelForCausalLM, AutoTokenizer]:
|
|
@@ -66,7 +66,6 @@ def finetune_small_subset() -> str:
|
|
| 66 |
Returns:
|
| 67 |
str: A message indicating finetuning completion.
|
| 68 |
"""
|
| 69 |
-
# Specify the configuration ("v0" or "v1") explicitly.
|
| 70 |
ds = load_dataset("ServiceNow-AI/R1-Distill-SFT", "v0", split="train")
|
| 71 |
ds = ds.select(range(min(NUM_EXAMPLES_FOR_FINETUNING, len(ds))))
|
| 72 |
|
|
@@ -76,8 +75,6 @@ def finetune_small_subset() -> str:
|
|
| 76 |
bnb_4bit_use_double_quant=True,
|
| 77 |
bnb_4bit_quant_type="nf4",
|
| 78 |
)
|
| 79 |
-
|
| 80 |
-
# Load the custom model configuration from the repository.
|
| 81 |
base_model, tokenizer = _load_model_and_tokenizer(
|
| 82 |
"wuhp/myr1", subfolder="myr1", quantization_config=bnb_config, device_map="auto"
|
| 83 |
)
|
|
@@ -112,8 +109,8 @@ def finetune_small_subset() -> str:
|
|
| 112 |
per_device_train_batch_size=1,
|
| 113 |
gradient_accumulation_steps=2,
|
| 114 |
logging_steps=5,
|
| 115 |
-
save_steps=999999,
|
| 116 |
-
save_total_limit=1,
|
| 117 |
fp16=False,
|
| 118 |
)
|
| 119 |
|
|
@@ -128,7 +125,7 @@ def finetune_small_subset() -> str:
|
|
| 128 |
trainer.model.save_pretrained("finetuned_myr1")
|
| 129 |
tokenizer.save_pretrained("finetuned_myr1")
|
| 130 |
|
| 131 |
-
base_model_2, tokenizer_2 = _load_model_and_tokenizer(
|
| 132 |
"wuhp/myr1", subfolder="myr1", quantization_config=bnb_config, device_map="auto"
|
| 133 |
)
|
| 134 |
base_model_2 = prepare_model_for_kbit_training(base_model_2)
|
|
@@ -139,7 +136,7 @@ def finetune_small_subset() -> str:
|
|
| 139 |
)
|
| 140 |
|
| 141 |
global TEXT_PIPELINE
|
| 142 |
-
TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=tokenizer_2)
|
| 143 |
|
| 144 |
return "Finetuning complete. Model loaded for inference."
|
| 145 |
|
|
@@ -205,18 +202,26 @@ def predict(
|
|
| 205 |
max_new_tokens (int): Maximum number of new tokens to generate.
|
| 206 |
|
| 207 |
Returns:
|
| 208 |
-
str: The generated text output.
|
| 209 |
"""
|
| 210 |
pipe = ensure_pipeline()
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
prompt,
|
| 213 |
temperature=float(temperature),
|
| 214 |
top_p=float(top_p),
|
| 215 |
min_new_tokens=int(min_new_tokens),
|
| 216 |
max_new_tokens=int(max_new_tokens),
|
| 217 |
do_sample=True
|
| 218 |
-
)
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
|
| 222 |
@spaces.GPU(duration=120)
|
|
@@ -238,28 +243,41 @@ def compare_models(
|
|
| 238 |
max_new_tokens (int): Maximum number of new tokens to generate.
|
| 239 |
|
| 240 |
Returns:
|
| 241 |
-
tuple[str, str]: A tuple containing the generated text from the custom R1 and official R1 models.
|
| 242 |
"""
|
| 243 |
local_pipe = ensure_pipeline()
|
| 244 |
comp_pipe = ensure_comparison_pipeline()
|
| 245 |
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
prompt,
|
| 248 |
temperature=float(temperature),
|
| 249 |
top_p=float(top_p),
|
| 250 |
min_new_tokens=int(min_new_tokens),
|
| 251 |
max_new_tokens=int(max_new_tokens),
|
| 252 |
do_sample=True
|
| 253 |
-
)
|
| 254 |
-
|
|
|
|
| 255 |
prompt,
|
| 256 |
temperature=float(temperature),
|
| 257 |
top_p=float(top_p),
|
| 258 |
min_new_tokens=int(min_new_tokens),
|
| 259 |
max_new_tokens=int(max_new_tokens),
|
| 260 |
do_sample=True
|
| 261 |
-
)
|
| 262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
|
| 265 |
class ConversationRetriever:
|
|
@@ -335,15 +353,20 @@ def build_rag_prompt(user_query: str, retrieved_chunks: list[tuple[str, float]])
|
|
| 335 |
retrieved_chunks (list[tuple[str, float]]): List of retrieved text chunks and their distances.
|
| 336 |
|
| 337 |
Returns:
|
| 338 |
-
str: The formatted prompt string.
|
| 339 |
"""
|
| 340 |
context_str = ""
|
| 341 |
-
|
| 342 |
-
context_str +=
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
prompt = (
|
| 344 |
-
f"User
|
| 345 |
-
f"
|
| 346 |
-
"
|
|
|
|
| 347 |
)
|
| 348 |
return prompt
|
| 349 |
|
|
@@ -369,13 +392,18 @@ def chat_rag(
|
|
| 369 |
max_new_tokens (int): Maximum number of new tokens to generate.
|
| 370 |
|
| 371 |
Returns:
|
| 372 |
-
tuple[list[list[str]], list[list[str]]]: Updated chat history and chatbot display history.
|
| 373 |
"""
|
| 374 |
pipe = ensure_pipeline()
|
| 375 |
retriever.add_text(f"User: {user_input}")
|
| 376 |
top_k = 3
|
| 377 |
results = retriever.search(user_input, top_k=top_k)
|
| 378 |
prompt = build_rag_prompt(user_input, results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
output = pipe(
|
| 380 |
prompt,
|
| 381 |
temperature=float(temperature),
|
|
@@ -385,10 +413,14 @@ def chat_rag(
|
|
| 385 |
do_sample=True
|
| 386 |
)[0]["generated_text"]
|
| 387 |
|
| 388 |
-
|
| 389 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
else:
|
| 391 |
-
assistant_reply =
|
| 392 |
|
| 393 |
retriever.add_text(f"Assistant: {assistant_reply}")
|
| 394 |
history.append([user_input, assistant_reply])
|
|
@@ -398,46 +430,56 @@ def chat_rag(
|
|
| 398 |
# Build the Gradio interface.
|
| 399 |
with gr.Blocks() as demo:
|
| 400 |
gr.Markdown("# QLoRA Fine-tuning & RAG-based Chat Demo using Custom R1 Model")
|
|
|
|
| 401 |
|
| 402 |
-
|
| 403 |
-
|
|
|
|
|
|
|
| 404 |
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
|
|
|
|
| 405 |
|
| 406 |
-
gr.Markdown("## Direct Generation (No Retrieval)
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
|
|
|
| 410 |
min_tokens = gr.Slider(1, 2500, value=50, step=10, label="Min New Tokens")
|
| 411 |
max_tokens = gr.Slider(1, 2500, value=200, step=50, label="Max New Tokens")
|
| 412 |
-
output_box = gr.Textbox(label="Custom R1 Output", lines=8)
|
| 413 |
-
gen_btn = gr.Button("Generate
|
| 414 |
gen_btn.click(
|
| 415 |
fn=predict,
|
| 416 |
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
|
| 417 |
outputs=output_box
|
| 418 |
)
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
|
|
|
|
|
|
|
|
|
| 424 |
compare_btn.click(
|
| 425 |
fn=compare_models,
|
| 426 |
-
inputs=[
|
| 427 |
outputs=[out_custom, out_official]
|
| 428 |
)
|
|
|
|
| 429 |
|
| 430 |
-
gr.Markdown("## Chat with Retrieval-Augmented Memory")
|
|
|
|
| 431 |
with gr.Row():
|
| 432 |
with gr.Column():
|
| 433 |
-
chatbot = gr.Chatbot(label="RAG
|
| 434 |
chat_state = gr.State([])
|
| 435 |
user_input = gr.Textbox(
|
| 436 |
show_label=False,
|
| 437 |
-
placeholder="Ask a question...",
|
| 438 |
lines=2
|
| 439 |
)
|
| 440 |
-
send_btn = gr.Button("Send")
|
| 441 |
user_input.submit(
|
| 442 |
fn=chat_rag,
|
| 443 |
inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens],
|
|
@@ -448,5 +490,7 @@ with gr.Blocks() as demo:
|
|
| 448 |
inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens],
|
| 449 |
outputs=[chat_state, chatbot]
|
| 450 |
)
|
|
|
|
|
|
|
| 451 |
|
| 452 |
demo.launch()
|
|
|
|
| 21 |
|
| 22 |
NUM_EXAMPLES_FOR_FINETUNING = 50 # Constant for the number of examples to use for finetuning
|
| 23 |
TEXT_PIPELINE = None # Global to store the custom R1 text generation pipeline
|
| 24 |
+
COMPARISON_PIPELINE = None # Global to store the official R1 text generation pipeline
|
| 25 |
|
| 26 |
|
| 27 |
def _load_model_and_tokenizer(model_name: str, subfolder: str = None, quantization_config: BitsAndBytesConfig = None, device_map: str = "auto", trust_remote_code: bool = True) -> tuple[AutoModelForCausalLM, AutoTokenizer]:
|
|
|
|
| 66 |
Returns:
|
| 67 |
str: A message indicating finetuning completion.
|
| 68 |
"""
|
|
|
|
| 69 |
ds = load_dataset("ServiceNow-AI/R1-Distill-SFT", "v0", split="train")
|
| 70 |
ds = ds.select(range(min(NUM_EXAMPLES_FOR_FINETUNING, len(ds))))
|
| 71 |
|
|
|
|
| 75 |
bnb_4bit_use_double_quant=True,
|
| 76 |
bnb_4bit_quant_type="nf4",
|
| 77 |
)
|
|
|
|
|
|
|
| 78 |
base_model, tokenizer = _load_model_and_tokenizer(
|
| 79 |
"wuhp/myr1", subfolder="myr1", quantization_config=bnb_config, device_map="auto"
|
| 80 |
)
|
|
|
|
| 109 |
per_device_train_batch_size=1,
|
| 110 |
gradient_accumulation_steps=2,
|
| 111 |
logging_steps=5,
|
| 112 |
+
save_steps=999999,
|
| 113 |
+
save_total_limit=1,
|
| 114 |
fp16=False,
|
| 115 |
)
|
| 116 |
|
|
|
|
| 125 |
trainer.model.save_pretrained("finetuned_myr1")
|
| 126 |
tokenizer.save_pretrained("finetuned_myr1")
|
| 127 |
|
| 128 |
+
base_model_2, tokenizer_2 = _load_model_and_tokenizer(
|
| 129 |
"wuhp/myr1", subfolder="myr1", quantization_config=bnb_config, device_map="auto"
|
| 130 |
)
|
| 131 |
base_model_2 = prepare_model_for_kbit_training(base_model_2)
|
|
|
|
| 136 |
)
|
| 137 |
|
| 138 |
global TEXT_PIPELINE
|
| 139 |
+
TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=tokenizer_2)
|
| 140 |
|
| 141 |
return "Finetuning complete. Model loaded for inference."
|
| 142 |
|
|
|
|
| 202 |
max_new_tokens (int): Maximum number of new tokens to generate.
|
| 203 |
|
| 204 |
Returns:
|
| 205 |
+
str: The generated text output with "Thinking Process" and "Solution" sections.
|
| 206 |
"""
|
| 207 |
pipe = ensure_pipeline()
|
| 208 |
+
thinking_prefix = "**Thinking Process:**\n"
|
| 209 |
+
solution_prefix = "\n**Solution:**\n"
|
| 210 |
+
formatted_output = thinking_prefix
|
| 211 |
+
|
| 212 |
+
output = pipe(
|
| 213 |
prompt,
|
| 214 |
temperature=float(temperature),
|
| 215 |
top_p=float(top_p),
|
| 216 |
min_new_tokens=int(min_new_tokens),
|
| 217 |
max_new_tokens=int(max_new_tokens),
|
| 218 |
do_sample=True
|
| 219 |
+
)[0]["generated_text"]
|
| 220 |
+
|
| 221 |
+
formatted_output += output.strip() + solution_prefix
|
| 222 |
+
formatted_output += "Final Answer (This part is a placeholder and needs better extraction): ... "
|
| 223 |
+
|
| 224 |
+
return formatted_output
|
| 225 |
|
| 226 |
|
| 227 |
@spaces.GPU(duration=120)
|
|
|
|
| 243 |
max_new_tokens (int): Maximum number of new tokens to generate.
|
| 244 |
|
| 245 |
Returns:
|
| 246 |
+
tuple[str, str]: A tuple containing the formatted generated text from the custom R1 and official R1 models, each with "Thinking Process" and "Solution" sections.
|
| 247 |
"""
|
| 248 |
local_pipe = ensure_pipeline()
|
| 249 |
comp_pipe = ensure_comparison_pipeline()
|
| 250 |
|
| 251 |
+
def format_comparison_output(model_name, raw_output):
|
| 252 |
+
thinking_prefix = f"**{model_name} - Thinking Process:**\n"
|
| 253 |
+
solution_prefix = f"\n**{model_name} - Solution:**\n"
|
| 254 |
+
formatted_output = thinking_prefix
|
| 255 |
+
formatted_output += raw_output.strip() + solution_prefix
|
| 256 |
+
formatted_output += f"{model_name} Final Answer: ... "
|
| 257 |
+
return formatted_output
|
| 258 |
+
|
| 259 |
+
local_out_raw = local_pipe(
|
| 260 |
prompt,
|
| 261 |
temperature=float(temperature),
|
| 262 |
top_p=float(top_p),
|
| 263 |
min_new_tokens=int(min_new_tokens),
|
| 264 |
max_new_tokens=int(max_new_tokens),
|
| 265 |
do_sample=True
|
| 266 |
+
)[0]["generated_text"]
|
| 267 |
+
|
| 268 |
+
comp_out_raw = comp_pipe(
|
| 269 |
prompt,
|
| 270 |
temperature=float(temperature),
|
| 271 |
top_p=float(top_p),
|
| 272 |
min_new_tokens=int(min_new_tokens),
|
| 273 |
max_new_tokens=int(max_new_tokens),
|
| 274 |
do_sample=True
|
| 275 |
+
)[0]["generated_text"]
|
| 276 |
+
|
| 277 |
+
local_out_formatted = format_comparison_output("Custom R1", local_out_raw)
|
| 278 |
+
comp_out_formatted = format_comparison_output("Official R1", comp_out_raw)
|
| 279 |
+
|
| 280 |
+
return local_out_formatted, comp_out_formatted
|
| 281 |
|
| 282 |
|
| 283 |
class ConversationRetriever:
|
|
|
|
| 353 |
retrieved_chunks (list[tuple[str, float]]): List of retrieved text chunks and their distances.
|
| 354 |
|
| 355 |
Returns:
|
| 356 |
+
str: The formatted prompt string including instructions for step-by-step thinking and using context.
|
| 357 |
"""
|
| 358 |
context_str = ""
|
| 359 |
+
if retrieved_chunks:
|
| 360 |
+
context_str += "**Relevant Context:**\n"
|
| 361 |
+
for i, (chunk, dist) in enumerate(retrieved_chunks):
|
| 362 |
+
context_str += f"Chunk #{i+1} (similarity ~ {dist:.2f}):\n> {chunk}\n\n"
|
| 363 |
+
|
| 364 |
+
prompt_instruction = "Please provide a detailed answer, showing your thinking process step-by-step before stating the final answer. Use the provided context if relevant."
|
| 365 |
prompt = (
|
| 366 |
+
f"**User Query:**\n{user_query}\n\n"
|
| 367 |
+
f"{context_str}\n"
|
| 368 |
+
f"{prompt_instruction}\n\n"
|
| 369 |
+
"**Answer:**\n"
|
| 370 |
)
|
| 371 |
return prompt
|
| 372 |
|
|
|
|
| 392 |
max_new_tokens (int): Maximum number of new tokens to generate.
|
| 393 |
|
| 394 |
Returns:
|
| 395 |
+
tuple[list[list[str]], list[list[str]]]: Updated chat history and chatbot display history, with formatted assistant replies.
|
| 396 |
"""
|
| 397 |
pipe = ensure_pipeline()
|
| 398 |
retriever.add_text(f"User: {user_input}")
|
| 399 |
top_k = 3
|
| 400 |
results = retriever.search(user_input, top_k=top_k)
|
| 401 |
prompt = build_rag_prompt(user_input, results)
|
| 402 |
+
|
| 403 |
+
thinking_prefix = "**Thinking Process:**\n"
|
| 404 |
+
solution_prefix = "\n**Solution:**\n"
|
| 405 |
+
formatted_output = thinking_prefix
|
| 406 |
+
|
| 407 |
output = pipe(
|
| 408 |
prompt,
|
| 409 |
temperature=float(temperature),
|
|
|
|
| 413 |
do_sample=True
|
| 414 |
)[0]["generated_text"]
|
| 415 |
|
| 416 |
+
formatted_output += output.strip() + solution_prefix
|
| 417 |
+
formatted_output += "Final Answer (This part is a placeholder and needs better extraction): ... "
|
| 418 |
+
assistant_reply = formatted_output
|
| 419 |
+
|
| 420 |
+
if assistant_reply.startswith(prompt):
|
| 421 |
+
assistant_reply = assistant_reply[len(prompt):].strip()
|
| 422 |
else:
|
| 423 |
+
assistant_reply = assistant_reply.strip()
|
| 424 |
|
| 425 |
retriever.add_text(f"Assistant: {assistant_reply}")
|
| 426 |
history.append([user_input, assistant_reply])
|
|
|
|
| 430 |
# Build the Gradio interface.
|
| 431 |
with gr.Blocks() as demo:
|
| 432 |
gr.Markdown("# QLoRA Fine-tuning & RAG-based Chat Demo using Custom R1 Model")
|
| 433 |
+
gr.Markdown("---")
|
| 434 |
|
| 435 |
+
gr.Markdown("## ⚙️ Fine-tuning (Optional)")
|
| 436 |
+
gr.Markdown("This section allows you to fine-tune the custom R1 model on a small subset of the ServiceNow dataset. This step is optional but can potentially improve the model's performance on ServiceNow-related tasks. **Note:** This process may take up to 5 minutes.")
|
| 437 |
+
finetune_btn = gr.Button("🚀 Start Fine-tuning (QLoRA)")
|
| 438 |
+
status_box = gr.Textbox(label="Fine-tuning Status", interactive=False)
|
| 439 |
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
|
| 440 |
+
gr.Markdown("---")
|
| 441 |
|
| 442 |
+
gr.Markdown("## ✍️ Direct Generation (No Retrieval)")
|
| 443 |
+
gr.Markdown("Enter a prompt below to generate text directly using the custom R1 model. This is standard text generation without retrieval augmentation.")
|
| 444 |
+
prompt_in = gr.Textbox(lines=3, label="Input Prompt", placeholder="Enter your prompt here...")
|
| 445 |
+
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature (Creativity)")
|
| 446 |
+
top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p (Sampling Nucleus)")
|
| 447 |
min_tokens = gr.Slider(1, 2500, value=50, step=10, label="Min New Tokens")
|
| 448 |
max_tokens = gr.Slider(1, 2500, value=200, step=50, label="Max New Tokens")
|
| 449 |
+
output_box = gr.Textbox(label="Custom R1 Output", lines=8, interactive=False)
|
| 450 |
+
gen_btn = gr.Button("✨ Generate Text")
|
| 451 |
gen_btn.click(
|
| 452 |
fn=predict,
|
| 453 |
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
|
| 454 |
outputs=output_box
|
| 455 |
)
|
| 456 |
+
gr.Markdown("---")
|
| 457 |
+
|
| 458 |
+
gr.Markdown("## 🆚 Compare Custom R1 vs Official R1")
|
| 459 |
+
gr.Markdown("Enter a prompt to compare the text generation of your fine-tuned custom R1 model with the official DeepSeek-R1-Distill-Llama-8B model.")
|
| 460 |
+
compare_prompt_in = gr.Textbox(lines=3, label="Comparison Prompt", placeholder="Enter prompt for comparison...")
|
| 461 |
+
compare_btn = gr.Button("⚖️ Compare Models")
|
| 462 |
+
out_custom = gr.Textbox(label="Custom R1 Output", lines=6, interactive=False)
|
| 463 |
+
out_official = gr.Textbox(label="Official R1 Output", lines=6, interactive=False)
|
| 464 |
compare_btn.click(
|
| 465 |
fn=compare_models,
|
| 466 |
+
inputs=[compare_prompt_in, temperature, top_p, min_tokens, max_tokens],
|
| 467 |
outputs=[out_custom, out_official]
|
| 468 |
)
|
| 469 |
+
gr.Markdown("---")
|
| 470 |
|
| 471 |
+
gr.Markdown("## 💬 Chat with Retrieval-Augmented Memory (RAG)")
|
| 472 |
+
gr.Markdown("Chat with the custom R1 model, enhanced with a retrieval-augmented memory. The model will retrieve relevant information based on your queries to provide more informed responses.")
|
| 473 |
with gr.Row():
|
| 474 |
with gr.Column():
|
| 475 |
+
chatbot = gr.Chatbot(label="RAG Chatbot")
|
| 476 |
chat_state = gr.State([])
|
| 477 |
user_input = gr.Textbox(
|
| 478 |
show_label=False,
|
| 479 |
+
placeholder="Ask a question to the RAG Chatbot...",
|
| 480 |
lines=2
|
| 481 |
)
|
| 482 |
+
send_btn = gr.Button("➡️ Send")
|
| 483 |
user_input.submit(
|
| 484 |
fn=chat_rag,
|
| 485 |
inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens],
|
|
|
|
| 490 |
inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens],
|
| 491 |
outputs=[chat_state, chatbot]
|
| 492 |
)
|
| 493 |
+
gr.Markdown("---")
|
| 494 |
+
|
| 495 |
|
| 496 |
demo.launch()
|