Update app.py
Browse files
app.py
CHANGED
|
@@ -2,14 +2,15 @@ import gradio as gr
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 3 |
from datasets import load_dataset
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
MODEL = "yagnik12/
|
|
|
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
| 8 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
| 9 |
|
| 10 |
detector = pipeline("text-classification", model=model, tokenizer=tokenizer, return_all_scores=True)
|
| 11 |
|
| 12 |
-
# Load BiScope
|
| 13 |
biscope = load_dataset("HanxiGuo/BiScope_Data", split="test[:20]")
|
| 14 |
|
| 15 |
def detect_ai(text):
|
|
@@ -24,8 +25,8 @@ def detect_ai(text):
|
|
| 24 |
}
|
| 25 |
|
| 26 |
with gr.Blocks() as demo:
|
| 27 |
-
gr.Markdown("# AI vs Human Text Detector (BiScope)")
|
| 28 |
-
|
| 29 |
with gr.Row():
|
| 30 |
inp = gr.Textbox(lines=5, placeholder="Enter text here...")
|
| 31 |
out = gr.JSON()
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 3 |
from datasets import load_dataset
|
| 4 |
|
| 5 |
+
# ✅ Use your fine-tuned model (after running train.py)
|
| 6 |
+
MODEL = "yagnik12/biscope-detector"
|
| 7 |
+
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
| 9 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
| 10 |
|
| 11 |
detector = pipeline("text-classification", model=model, tokenizer=tokenizer, return_all_scores=True)
|
| 12 |
|
| 13 |
+
# Load some BiScope test examples for demo
|
| 14 |
biscope = load_dataset("HanxiGuo/BiScope_Data", split="test[:20]")
|
| 15 |
|
| 16 |
def detect_ai(text):
|
|
|
|
| 25 |
}
|
| 26 |
|
| 27 |
with gr.Blocks() as demo:
|
| 28 |
+
gr.Markdown("# AI vs Human Text Detector (BiScope Dataset)")
|
| 29 |
+
|
| 30 |
with gr.Row():
|
| 31 |
inp = gr.Textbox(lines=5, placeholder="Enter text here...")
|
| 32 |
out = gr.JSON()
|