Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import warnings | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from mmcv.cnn import build_norm_layer | |
| from mmcv.cnn.bricks.drop import build_dropout | |
| from mmengine.model import BaseModule, ModuleList | |
| from mmengine.model.weight_init import (constant_init, kaiming_init, | |
| trunc_normal_) | |
| from mmengine.runner.checkpoint import _load_checkpoint | |
| from scipy import interpolate | |
| from torch.nn.modules.batchnorm import _BatchNorm | |
| from torch.nn.modules.utils import _pair as to_2tuple | |
| from mmseg.registry import MODELS | |
| from ..utils import PatchEmbed | |
| from .vit import TransformerEncoderLayer as VisionTransformerEncoderLayer | |
| class BEiTAttention(BaseModule): | |
| """Window based multi-head self-attention (W-MSA) module with relative | |
| position bias. | |
| Args: | |
| embed_dims (int): Number of input channels. | |
| num_heads (int): Number of attention heads. | |
| window_size (tuple[int]): The height and width of the window. | |
| bias (bool): The option to add leanable bias for q, k, v. If bias is | |
| True, it will add leanable bias. If bias is 'qv_bias', it will only | |
| add leanable bias for q, v. If bias is False, it will not add bias | |
| for q, k, v. Default to 'qv_bias'. | |
| qk_scale (float | None, optional): Override default qk scale of | |
| head_dim ** -0.5 if set. Default: None. | |
| attn_drop_rate (float): Dropout ratio of attention weight. | |
| Default: 0.0 | |
| proj_drop_rate (float): Dropout ratio of output. Default: 0. | |
| init_cfg (dict | None, optional): The Config for initialization. | |
| Default: None. | |
| """ | |
| def __init__(self, | |
| embed_dims, | |
| num_heads, | |
| window_size, | |
| bias='qv_bias', | |
| qk_scale=None, | |
| attn_drop_rate=0., | |
| proj_drop_rate=0., | |
| init_cfg=None, | |
| **kwargs): | |
| super().__init__(init_cfg=init_cfg) | |
| self.embed_dims = embed_dims | |
| self.num_heads = num_heads | |
| head_embed_dims = embed_dims // num_heads | |
| self.bias = bias | |
| self.scale = qk_scale or head_embed_dims**-0.5 | |
| qkv_bias = bias | |
| if bias == 'qv_bias': | |
| self._init_qv_bias() | |
| qkv_bias = False | |
| self.window_size = window_size | |
| self._init_rel_pos_embedding() | |
| self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop_rate) | |
| self.proj = nn.Linear(embed_dims, embed_dims) | |
| self.proj_drop = nn.Dropout(proj_drop_rate) | |
| def _init_qv_bias(self): | |
| self.q_bias = nn.Parameter(torch.zeros(self.embed_dims)) | |
| self.v_bias = nn.Parameter(torch.zeros(self.embed_dims)) | |
| def _init_rel_pos_embedding(self): | |
| Wh, Ww = self.window_size | |
| # cls to token & token 2 cls & cls to cls | |
| self.num_relative_distance = (2 * Wh - 1) * (2 * Ww - 1) + 3 | |
| # relative_position_bias_table shape is (2*Wh-1 * 2*Ww-1 + 3, nH) | |
| self.relative_position_bias_table = nn.Parameter( | |
| torch.zeros(self.num_relative_distance, self.num_heads)) | |
| # get pair-wise relative position index for | |
| # each token inside the window | |
| coords_h = torch.arange(Wh) | |
| coords_w = torch.arange(Ww) | |
| # coords shape is (2, Wh, Ww) | |
| coords = torch.stack(torch.meshgrid([coords_h, coords_w])) | |
| # coords_flatten shape is (2, Wh*Ww) | |
| coords_flatten = torch.flatten(coords, 1) | |
| relative_coords = ( | |
| coords_flatten[:, :, None] - coords_flatten[:, None, :]) | |
| # relative_coords shape is (Wh*Ww, Wh*Ww, 2) | |
| relative_coords = relative_coords.permute(1, 2, 0).contiguous() | |
| # shift to start from 0 | |
| relative_coords[:, :, 0] += Wh - 1 | |
| relative_coords[:, :, 1] += Ww - 1 | |
| relative_coords[:, :, 0] *= 2 * Ww - 1 | |
| relative_position_index = torch.zeros( | |
| size=(Wh * Ww + 1, ) * 2, dtype=relative_coords.dtype) | |
| # relative_position_index shape is (Wh*Ww, Wh*Ww) | |
| relative_position_index[1:, 1:] = relative_coords.sum(-1) | |
| relative_position_index[0, 0:] = self.num_relative_distance - 3 | |
| relative_position_index[0:, 0] = self.num_relative_distance - 2 | |
| relative_position_index[0, 0] = self.num_relative_distance - 1 | |
| self.register_buffer('relative_position_index', | |
| relative_position_index) | |
| def init_weights(self): | |
| trunc_normal_(self.relative_position_bias_table, std=0.02) | |
| def forward(self, x): | |
| """ | |
| Args: | |
| x (tensor): input features with shape of (num_windows*B, N, C). | |
| """ | |
| B, N, C = x.shape | |
| if self.bias == 'qv_bias': | |
| k_bias = torch.zeros_like(self.v_bias, requires_grad=False) | |
| qkv_bias = torch.cat((self.q_bias, k_bias, self.v_bias)) | |
| qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) | |
| else: | |
| qkv = self.qkv(x) | |
| qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
| q, k, v = qkv[0], qkv[1], qkv[2] | |
| q = q * self.scale | |
| attn = (q @ k.transpose(-2, -1)) | |
| if self.relative_position_bias_table is not None: | |
| Wh = self.window_size[0] | |
| Ww = self.window_size[1] | |
| relative_position_bias = self.relative_position_bias_table[ | |
| self.relative_position_index.view(-1)].view( | |
| Wh * Ww + 1, Wh * Ww + 1, -1) | |
| relative_position_bias = relative_position_bias.permute( | |
| 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
| attn = attn + relative_position_bias.unsqueeze(0) | |
| attn = attn.softmax(dim=-1) | |
| attn = self.attn_drop(attn) | |
| x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class BEiTTransformerEncoderLayer(VisionTransformerEncoderLayer): | |
| """Implements one encoder layer in Vision Transformer. | |
| Args: | |
| embed_dims (int): The feature dimension. | |
| num_heads (int): Parallel attention heads. | |
| feedforward_channels (int): The hidden dimension for FFNs. | |
| attn_drop_rate (float): The drop out rate for attention layer. | |
| Default: 0.0. | |
| drop_path_rate (float): Stochastic depth rate. Default 0.0. | |
| num_fcs (int): The number of fully-connected layers for FFNs. | |
| Default: 2. | |
| bias (bool): The option to add leanable bias for q, k, v. If bias is | |
| True, it will add leanable bias. If bias is 'qv_bias', it will only | |
| add leanable bias for q, v. If bias is False, it will not add bias | |
| for q, k, v. Default to 'qv_bias'. | |
| act_cfg (dict): The activation config for FFNs. | |
| Default: dict(type='GELU'). | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: dict(type='LN'). | |
| window_size (tuple[int], optional): The height and width of the window. | |
| Default: None. | |
| init_values (float, optional): Initialize the values of BEiTAttention | |
| and FFN with learnable scaling. Default: None. | |
| """ | |
| def __init__(self, | |
| embed_dims, | |
| num_heads, | |
| feedforward_channels, | |
| attn_drop_rate=0., | |
| drop_path_rate=0., | |
| num_fcs=2, | |
| bias='qv_bias', | |
| act_cfg=dict(type='GELU'), | |
| norm_cfg=dict(type='LN'), | |
| window_size=None, | |
| attn_cfg=dict(), | |
| ffn_cfg=dict(add_identity=False), | |
| init_values=None): | |
| attn_cfg.update(dict(window_size=window_size, qk_scale=None)) | |
| super().__init__( | |
| embed_dims=embed_dims, | |
| num_heads=num_heads, | |
| feedforward_channels=feedforward_channels, | |
| attn_drop_rate=attn_drop_rate, | |
| drop_path_rate=0., | |
| drop_rate=0., | |
| num_fcs=num_fcs, | |
| qkv_bias=bias, | |
| act_cfg=act_cfg, | |
| norm_cfg=norm_cfg, | |
| attn_cfg=attn_cfg, | |
| ffn_cfg=ffn_cfg) | |
| # NOTE: drop path for stochastic depth, we shall see if | |
| # this is better than dropout here | |
| dropout_layer = dict(type='DropPath', drop_prob=drop_path_rate) | |
| self.drop_path = build_dropout( | |
| dropout_layer) if dropout_layer else nn.Identity() | |
| self.gamma_1 = nn.Parameter( | |
| init_values * torch.ones(embed_dims), requires_grad=True) | |
| self.gamma_2 = nn.Parameter( | |
| init_values * torch.ones(embed_dims), requires_grad=True) | |
| def build_attn(self, attn_cfg): | |
| self.attn = BEiTAttention(**attn_cfg) | |
| def forward(self, x): | |
| x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) | |
| x = x + self.drop_path(self.gamma_2 * self.ffn(self.norm2(x))) | |
| return x | |
| class BEiT(BaseModule): | |
| """BERT Pre-Training of Image Transformers. | |
| Args: | |
| img_size (int | tuple): Input image size. Default: 224. | |
| patch_size (int): The patch size. Default: 16. | |
| in_channels (int): Number of input channels. Default: 3. | |
| embed_dims (int): Embedding dimension. Default: 768. | |
| num_layers (int): Depth of transformer. Default: 12. | |
| num_heads (int): Number of attention heads. Default: 12. | |
| mlp_ratio (int): Ratio of mlp hidden dim to embedding dim. | |
| Default: 4. | |
| out_indices (list | tuple | int): Output from which stages. | |
| Default: -1. | |
| qv_bias (bool): Enable bias for qv if True. Default: True. | |
| attn_drop_rate (float): The drop out rate for attention layer. | |
| Default 0.0 | |
| drop_path_rate (float): Stochastic depth rate. Default 0.0. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: dict(type='LN') | |
| act_cfg (dict): The activation config for FFNs. | |
| Default: dict(type='GELU'). | |
| patch_norm (bool): Whether to add a norm in PatchEmbed Block. | |
| Default: False. | |
| final_norm (bool): Whether to add a additional layer to normalize | |
| final feature map. Default: False. | |
| num_fcs (int): The number of fully-connected layers for FFNs. | |
| Default: 2. | |
| norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
| freeze running stats (mean and var). Note: Effect on Batch Norm | |
| and its variants only. Default: False. | |
| pretrained (str, optional): Model pretrained path. Default: None. | |
| init_values (float): Initialize the values of BEiTAttention and FFN | |
| with learnable scaling. | |
| init_cfg (dict or list[dict], optional): Initialization config dict. | |
| Default: None. | |
| """ | |
| def __init__(self, | |
| img_size=224, | |
| patch_size=16, | |
| in_channels=3, | |
| embed_dims=768, | |
| num_layers=12, | |
| num_heads=12, | |
| mlp_ratio=4, | |
| out_indices=-1, | |
| qv_bias=True, | |
| attn_drop_rate=0., | |
| drop_path_rate=0., | |
| norm_cfg=dict(type='LN'), | |
| act_cfg=dict(type='GELU'), | |
| patch_norm=False, | |
| final_norm=False, | |
| num_fcs=2, | |
| norm_eval=False, | |
| pretrained=None, | |
| init_values=0.1, | |
| init_cfg=None): | |
| super().__init__(init_cfg=init_cfg) | |
| if isinstance(img_size, int): | |
| img_size = to_2tuple(img_size) | |
| elif isinstance(img_size, tuple): | |
| if len(img_size) == 1: | |
| img_size = to_2tuple(img_size[0]) | |
| assert len(img_size) == 2, \ | |
| f'The size of image should have length 1 or 2, ' \ | |
| f'but got {len(img_size)}' | |
| assert not (init_cfg and pretrained), \ | |
| 'init_cfg and pretrained cannot be set at the same time' | |
| if isinstance(pretrained, str): | |
| warnings.warn('DeprecationWarning: pretrained is deprecated, ' | |
| 'please use "init_cfg" instead') | |
| self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) | |
| elif pretrained is not None: | |
| raise TypeError('pretrained must be a str or None') | |
| self.in_channels = in_channels | |
| self.img_size = img_size | |
| self.patch_size = patch_size | |
| self.norm_eval = norm_eval | |
| self.pretrained = pretrained | |
| self.num_layers = num_layers | |
| self.embed_dims = embed_dims | |
| self.num_heads = num_heads | |
| self.mlp_ratio = mlp_ratio | |
| self.attn_drop_rate = attn_drop_rate | |
| self.drop_path_rate = drop_path_rate | |
| self.num_fcs = num_fcs | |
| self.qv_bias = qv_bias | |
| self.act_cfg = act_cfg | |
| self.norm_cfg = norm_cfg | |
| self.patch_norm = patch_norm | |
| self.init_values = init_values | |
| self.window_size = (img_size[0] // patch_size, | |
| img_size[1] // patch_size) | |
| self.patch_shape = self.window_size | |
| self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims)) | |
| self._build_patch_embedding() | |
| self._build_layers() | |
| if isinstance(out_indices, int): | |
| if out_indices == -1: | |
| out_indices = num_layers - 1 | |
| self.out_indices = [out_indices] | |
| elif isinstance(out_indices, list) or isinstance(out_indices, tuple): | |
| self.out_indices = out_indices | |
| else: | |
| raise TypeError('out_indices must be type of int, list or tuple') | |
| self.final_norm = final_norm | |
| if final_norm: | |
| self.norm1_name, norm1 = build_norm_layer( | |
| norm_cfg, embed_dims, postfix=1) | |
| self.add_module(self.norm1_name, norm1) | |
| def _build_patch_embedding(self): | |
| """Build patch embedding layer.""" | |
| self.patch_embed = PatchEmbed( | |
| in_channels=self.in_channels, | |
| embed_dims=self.embed_dims, | |
| conv_type='Conv2d', | |
| kernel_size=self.patch_size, | |
| stride=self.patch_size, | |
| padding=0, | |
| norm_cfg=self.norm_cfg if self.patch_norm else None, | |
| init_cfg=None) | |
| def _build_layers(self): | |
| """Build transformer encoding layers.""" | |
| dpr = [ | |
| x.item() | |
| for x in torch.linspace(0, self.drop_path_rate, self.num_layers) | |
| ] | |
| self.layers = ModuleList() | |
| for i in range(self.num_layers): | |
| self.layers.append( | |
| BEiTTransformerEncoderLayer( | |
| embed_dims=self.embed_dims, | |
| num_heads=self.num_heads, | |
| feedforward_channels=self.mlp_ratio * self.embed_dims, | |
| attn_drop_rate=self.attn_drop_rate, | |
| drop_path_rate=dpr[i], | |
| num_fcs=self.num_fcs, | |
| bias='qv_bias' if self.qv_bias else False, | |
| act_cfg=self.act_cfg, | |
| norm_cfg=self.norm_cfg, | |
| window_size=self.window_size, | |
| init_values=self.init_values)) | |
| def norm1(self): | |
| return getattr(self, self.norm1_name) | |
| def _geometric_sequence_interpolation(self, src_size, dst_size, sequence, | |
| num): | |
| """Get new sequence via geometric sequence interpolation. | |
| Args: | |
| src_size (int): Pos_embedding size in pre-trained model. | |
| dst_size (int): Pos_embedding size in the current model. | |
| sequence (tensor): The relative position bias of the pretrain | |
| model after removing the extra tokens. | |
| num (int): Number of attention heads. | |
| Returns: | |
| new_sequence (tensor): Geometric sequence interpolate the | |
| pre-trained relative position bias to the size of | |
| the current model. | |
| """ | |
| def geometric_progression(a, r, n): | |
| return a * (1.0 - r**n) / (1.0 - r) | |
| # Here is a binary function. | |
| left, right = 1.01, 1.5 | |
| while right - left > 1e-6: | |
| q = (left + right) / 2.0 | |
| gp = geometric_progression(1, q, src_size // 2) | |
| if gp > dst_size // 2: | |
| right = q | |
| else: | |
| left = q | |
| # The position of each interpolated point is determined | |
| # by the ratio obtained by dichotomy. | |
| dis = [] | |
| cur = 1 | |
| for i in range(src_size // 2): | |
| dis.append(cur) | |
| cur += q**(i + 1) | |
| r_ids = [-_ for _ in reversed(dis)] | |
| x = r_ids + [0] + dis | |
| y = r_ids + [0] + dis | |
| t = dst_size // 2.0 | |
| dx = np.arange(-t, t + 0.1, 1.0) | |
| dy = np.arange(-t, t + 0.1, 1.0) | |
| # Interpolation functions are being executed and called. | |
| new_sequence = [] | |
| for i in range(num): | |
| z = sequence[:, i].view(src_size, src_size).float().numpy() | |
| f = interpolate.interp2d(x, y, z, kind='cubic') | |
| new_sequence.append( | |
| torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(sequence)) | |
| new_sequence = torch.cat(new_sequence, dim=-1) | |
| return new_sequence | |
| def resize_rel_pos_embed(self, checkpoint): | |
| """Resize relative pos_embed weights. | |
| This function is modified from | |
| https://github.com/microsoft/unilm/blob/master/beit/semantic_segmentation/mmcv_custom/checkpoint.py. # noqa: E501 | |
| Copyright (c) Microsoft Corporation | |
| Licensed under the MIT License | |
| Args: | |
| checkpoint (dict): Key and value of the pretrain model. | |
| Returns: | |
| state_dict (dict): Interpolate the relative pos_embed weights | |
| in the pre-train model to the current model size. | |
| """ | |
| if 'state_dict' in checkpoint: | |
| state_dict = checkpoint['state_dict'] | |
| else: | |
| state_dict = checkpoint | |
| all_keys = list(state_dict.keys()) | |
| for key in all_keys: | |
| if 'relative_position_index' in key: | |
| state_dict.pop(key) | |
| # In order to keep the center of pos_bias as consistent as | |
| # possible after interpolation, and vice versa in the edge | |
| # area, the geometric sequence interpolation method is adopted. | |
| if 'relative_position_bias_table' in key: | |
| rel_pos_bias = state_dict[key] | |
| src_num_pos, num_attn_heads = rel_pos_bias.size() | |
| dst_num_pos, _ = self.state_dict()[key].size() | |
| dst_patch_shape = self.patch_shape | |
| if dst_patch_shape[0] != dst_patch_shape[1]: | |
| raise NotImplementedError() | |
| # Count the number of extra tokens. | |
| num_extra_tokens = dst_num_pos - ( | |
| dst_patch_shape[0] * 2 - 1) * ( | |
| dst_patch_shape[1] * 2 - 1) | |
| src_size = int((src_num_pos - num_extra_tokens)**0.5) | |
| dst_size = int((dst_num_pos - num_extra_tokens)**0.5) | |
| if src_size != dst_size: | |
| extra_tokens = rel_pos_bias[-num_extra_tokens:, :] | |
| rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] | |
| new_rel_pos_bias = self._geometric_sequence_interpolation( | |
| src_size, dst_size, rel_pos_bias, num_attn_heads) | |
| new_rel_pos_bias = torch.cat( | |
| (new_rel_pos_bias, extra_tokens), dim=0) | |
| state_dict[key] = new_rel_pos_bias | |
| return state_dict | |
| def init_weights(self): | |
| def _init_weights(m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| self.apply(_init_weights) | |
| if (isinstance(self.init_cfg, dict) | |
| and self.init_cfg.get('type') == 'Pretrained'): | |
| checkpoint = _load_checkpoint( | |
| self.init_cfg['checkpoint'], logger=None, map_location='cpu') | |
| state_dict = self.resize_rel_pos_embed(checkpoint) | |
| self.load_state_dict(state_dict, False) | |
| elif self.init_cfg is not None: | |
| super().init_weights() | |
| else: | |
| # We only implement the 'jax_impl' initialization implemented at | |
| # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py#L353 # noqa: E501 | |
| # Copyright 2019 Ross Wightman | |
| # Licensed under the Apache License, Version 2.0 (the "License") | |
| trunc_normal_(self.cls_token, std=.02) | |
| for n, m in self.named_modules(): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if m.bias is not None: | |
| if 'ffn' in n: | |
| nn.init.normal_(m.bias, mean=0., std=1e-6) | |
| else: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.Conv2d): | |
| kaiming_init(m, mode='fan_in', bias=0.) | |
| elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)): | |
| constant_init(m, val=1.0, bias=0.) | |
| def forward(self, inputs): | |
| B = inputs.shape[0] | |
| x, hw_shape = self.patch_embed(inputs) | |
| # stole cls_tokens impl from Phil Wang, thanks | |
| cls_tokens = self.cls_token.expand(B, -1, -1) | |
| x = torch.cat((cls_tokens, x), dim=1) | |
| outs = [] | |
| for i, layer in enumerate(self.layers): | |
| x = layer(x) | |
| if i == len(self.layers) - 1: | |
| if self.final_norm: | |
| x = self.norm1(x) | |
| if i in self.out_indices: | |
| # Remove class token and reshape token for decoder head | |
| out = x[:, 1:] | |
| B, _, C = out.shape | |
| out = out.reshape(B, hw_shape[0], hw_shape[1], | |
| C).permute(0, 3, 1, 2).contiguous() | |
| outs.append(out) | |
| return tuple(outs) | |
| def train(self, mode=True): | |
| super().train(mode) | |
| if mode and self.norm_eval: | |
| for m in self.modules(): | |
| if isinstance(m, nn.LayerNorm): | |
| m.eval() | |