Spaces:
Runtime error
Runtime error
| norm_cfg = dict(type='SyncBN', requires_grad=True) | |
| custom_imports = dict(imports='mmpretrain.models', allow_failed_imports=False) | |
| checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-base_3rdparty_32xb128-noema_in1k_20220301-2a0ee547.pth' # noqa | |
| data_preprocessor = dict( | |
| type='SegDataPreProcessor', | |
| mean=[123.675, 116.28, 103.53], | |
| std=[58.395, 57.12, 57.375], | |
| bgr_to_rgb=True, | |
| pad_val=0, | |
| seg_pad_val=255) | |
| model = dict( | |
| type='EncoderDecoder', | |
| data_preprocessor=data_preprocessor, | |
| pretrained=None, | |
| backbone=dict( | |
| type='mmpretrain.ConvNeXt', | |
| arch='base', | |
| out_indices=[0, 1, 2, 3], | |
| drop_path_rate=0.4, | |
| layer_scale_init_value=1.0, | |
| gap_before_final_norm=False, | |
| init_cfg=dict( | |
| type='Pretrained', checkpoint=checkpoint_file, | |
| prefix='backbone.')), | |
| decode_head=dict( | |
| type='UPerHead', | |
| in_channels=[128, 256, 512, 1024], | |
| in_index=[0, 1, 2, 3], | |
| pool_scales=(1, 2, 3, 6), | |
| channels=512, | |
| dropout_ratio=0.1, | |
| num_classes=19, | |
| norm_cfg=norm_cfg, | |
| align_corners=False, | |
| loss_decode=dict( | |
| type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), | |
| auxiliary_head=dict( | |
| type='FCNHead', | |
| in_channels=384, | |
| in_index=2, | |
| channels=256, | |
| num_convs=1, | |
| concat_input=False, | |
| dropout_ratio=0.1, | |
| num_classes=19, | |
| norm_cfg=norm_cfg, | |
| align_corners=False, | |
| loss_decode=dict( | |
| type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), | |
| # model training and testing settings | |
| train_cfg=dict(), | |
| test_cfg=dict(mode='whole')) | |