Spaces:
Runtime error
Runtime error
| Collections: | |
| - Name: SegNeXt | |
| License: Apache License 2.0 | |
| Metadata: | |
| Training Data: | |
| - ADE20K | |
| Paper: | |
| Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation' | |
| URL: https://arxiv.org/abs/2209.08575 | |
| README: configs/segnext/README.md | |
| Frameworks: | |
| - PyTorch | |
| Models: | |
| - Name: segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512 | |
| In Collection: SegNeXt | |
| Results: | |
| Task: Semantic Segmentation | |
| Dataset: ADE20K | |
| Metrics: | |
| mIoU: 41.5 | |
| mIoU(ms+flip): 42.59 | |
| Config: configs/segnext/segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512.py | |
| Metadata: | |
| Training Data: ADE20K | |
| Batch Size: 16 | |
| Architecture: | |
| - MSCAN-T | |
| - SegNeXt | |
| Training Resources: 1x A100 GPUS | |
| Memory (GB): 17.88 | |
| Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k_20230210_140244-05bd8466.pth | |
| Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k_20230210_140244.log.json | |
| Paper: | |
| Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation' | |
| URL: https://arxiv.org/abs/2209.08575 | |
| Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/mscan.py#L328 | |
| Framework: PyTorch | |
| - Name: segnext_mscan-s_1xb16-adamw-160k_ade20k-512x512 | |
| In Collection: SegNeXt | |
| Results: | |
| Task: Semantic Segmentation | |
| Dataset: ADE20K | |
| Metrics: | |
| mIoU: 44.16 | |
| mIoU(ms+flip): 45.81 | |
| Config: configs/segnext/segnext_mscan-s_1xb16-adamw-160k_ade20k-512x512.py | |
| Metadata: | |
| Training Data: ADE20K | |
| Batch Size: 16 | |
| Architecture: | |
| - MSCAN-S | |
| - SegNeXt | |
| Training Resources: 1x A100 GPUS | |
| Memory (GB): 21.47 | |
| Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k_20230214_113014-43013668.pth | |
| Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k_20230214_113014.log.json | |
| Paper: | |
| Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation' | |
| URL: https://arxiv.org/abs/2209.08575 | |
| Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/mscan.py#L328 | |
| Framework: PyTorch | |
| - Name: segnext_mscan-b_1xb16-adamw-160k_ade20k-512x512 | |
| In Collection: SegNeXt | |
| Results: | |
| Task: Semantic Segmentation | |
| Dataset: ADE20K | |
| Metrics: | |
| mIoU: 48.03 | |
| mIoU(ms+flip): 49.68 | |
| Config: configs/segnext/segnext_mscan-b_1xb16-adamw-160k_ade20k-512x512.py | |
| Metadata: | |
| Training Data: ADE20K | |
| Batch Size: 16 | |
| Architecture: | |
| - MSCAN-B | |
| - SegNeXt | |
| Training Resources: 1x A100 GPUS | |
| Memory (GB): 31.03 | |
| Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k_20230209_172053-b6f6c70c.pth | |
| Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k_20230209_172053.log.json | |
| Paper: | |
| Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation' | |
| URL: https://arxiv.org/abs/2209.08575 | |
| Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/mscan.py#L328 | |
| Framework: PyTorch | |
| - Name: segnext_mscan-l_1xb16-adamw-160k_ade20k-512x512 | |
| In Collection: SegNeXt | |
| Results: | |
| Task: Semantic Segmentation | |
| Dataset: ADE20K | |
| Metrics: | |
| mIoU: 50.99 | |
| mIoU(ms+flip): 52.1 | |
| Config: configs/segnext/segnext_mscan-l_1xb16-adamw-160k_ade20k-512x512.py | |
| Metadata: | |
| Training Data: ADE20K | |
| Batch Size: 16 | |
| Architecture: | |
| - MSCAN-L | |
| - SegNeXt | |
| Training Resources: 1x A100 GPUS | |
| Memory (GB): 43.32 | |
| Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k_20230209_172055-19b14b63.pth | |
| Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k_20230209_172055.log.json | |
| Paper: | |
| Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation' | |
| URL: https://arxiv.org/abs/2209.08575 | |
| Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/mscan.py#L328 | |
| Framework: PyTorch | |