Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from abc import ABCMeta, abstractmethod | |
| from typing import List, Tuple | |
| from mmengine.model import BaseModel | |
| from mmengine.structures import PixelData | |
| from torch import Tensor | |
| from mmseg.structures import SegDataSample | |
| from mmseg.utils import (ForwardResults, OptConfigType, OptMultiConfig, | |
| OptSampleList, SampleList) | |
| from ..utils import resize | |
| class BaseSegmentor(BaseModel, metaclass=ABCMeta): | |
| """Base class for segmentors. | |
| Args: | |
| data_preprocessor (dict, optional): Model preprocessing config | |
| for processing the input data. it usually includes | |
| ``to_rgb``, ``pad_size_divisor``, ``pad_val``, | |
| ``mean`` and ``std``. Default to None. | |
| init_cfg (dict, optional): the config to control the | |
| initialization. Default to None. | |
| """ | |
| def __init__(self, | |
| data_preprocessor: OptConfigType = None, | |
| init_cfg: OptMultiConfig = None): | |
| super().__init__( | |
| data_preprocessor=data_preprocessor, init_cfg=init_cfg) | |
| def with_neck(self) -> bool: | |
| """bool: whether the segmentor has neck""" | |
| return hasattr(self, 'neck') and self.neck is not None | |
| def with_auxiliary_head(self) -> bool: | |
| """bool: whether the segmentor has auxiliary head""" | |
| return hasattr(self, | |
| 'auxiliary_head') and self.auxiliary_head is not None | |
| def with_decode_head(self) -> bool: | |
| """bool: whether the segmentor has decode head""" | |
| return hasattr(self, 'decode_head') and self.decode_head is not None | |
| def extract_feat(self, inputs: Tensor) -> bool: | |
| """Placeholder for extract features from images.""" | |
| pass | |
| def encode_decode(self, inputs: Tensor, batch_data_samples: SampleList): | |
| """Placeholder for encode images with backbone and decode into a | |
| semantic segmentation map of the same size as input.""" | |
| pass | |
| def forward(self, | |
| inputs: Tensor, | |
| data_samples: OptSampleList = None, | |
| mode: str = 'tensor') -> ForwardResults: | |
| """The unified entry for a forward process in both training and test. | |
| The method should accept three modes: "tensor", "predict" and "loss": | |
| - "tensor": Forward the whole network and return tensor or tuple of | |
| tensor without any post-processing, same as a common nn.Module. | |
| - "predict": Forward and return the predictions, which are fully | |
| processed to a list of :obj:`SegDataSample`. | |
| - "loss": Forward and return a dict of losses according to the given | |
| inputs and data samples. | |
| Note that this method doesn't handle neither back propagation nor | |
| optimizer updating, which are done in the :meth:`train_step`. | |
| Args: | |
| inputs (torch.Tensor): The input tensor with shape (N, C, ...) in | |
| general. | |
| data_samples (list[:obj:`SegDataSample`]): The seg data samples. | |
| It usually includes information such as `metainfo` and | |
| `gt_sem_seg`. Default to None. | |
| mode (str): Return what kind of value. Defaults to 'tensor'. | |
| Returns: | |
| The return type depends on ``mode``. | |
| - If ``mode="tensor"``, return a tensor or a tuple of tensor. | |
| - If ``mode="predict"``, return a list of :obj:`DetDataSample`. | |
| - If ``mode="loss"``, return a dict of tensor. | |
| """ | |
| if mode == 'loss': | |
| return self.loss(inputs, data_samples) | |
| elif mode == 'predict': | |
| return self.predict(inputs, data_samples) | |
| elif mode == 'tensor': | |
| return self._forward(inputs, data_samples) | |
| else: | |
| raise RuntimeError(f'Invalid mode "{mode}". ' | |
| 'Only supports loss, predict and tensor mode') | |
| def loss(self, inputs: Tensor, data_samples: SampleList) -> dict: | |
| """Calculate losses from a batch of inputs and data samples.""" | |
| pass | |
| def predict(self, | |
| inputs: Tensor, | |
| data_samples: OptSampleList = None) -> SampleList: | |
| """Predict results from a batch of inputs and data samples with post- | |
| processing.""" | |
| pass | |
| def _forward(self, | |
| inputs: Tensor, | |
| data_samples: OptSampleList = None) -> Tuple[List[Tensor]]: | |
| """Network forward process. | |
| Usually includes backbone, neck and head forward without any post- | |
| processing. | |
| """ | |
| pass | |
| def postprocess_result(self, | |
| seg_logits: Tensor, | |
| data_samples: OptSampleList = None) -> SampleList: | |
| """ Convert results list to `SegDataSample`. | |
| Args: | |
| seg_logits (Tensor): The segmentation results, seg_logits from | |
| model of each input image. | |
| data_samples (list[:obj:`SegDataSample`]): The seg data samples. | |
| It usually includes information such as `metainfo` and | |
| `gt_sem_seg`. Default to None. | |
| Returns: | |
| list[:obj:`SegDataSample`]: Segmentation results of the | |
| input images. Each SegDataSample usually contain: | |
| - ``pred_sem_seg``(PixelData): Prediction of semantic segmentation. | |
| - ``seg_logits``(PixelData): Predicted logits of semantic | |
| segmentation before normalization. | |
| """ | |
| batch_size, C, H, W = seg_logits.shape | |
| if data_samples is None: | |
| data_samples = [SegDataSample() for _ in range(batch_size)] | |
| only_prediction = True | |
| else: | |
| only_prediction = False | |
| for i in range(batch_size): | |
| if not only_prediction: | |
| img_meta = data_samples[i].metainfo | |
| # remove padding area | |
| if 'img_padding_size' not in img_meta: | |
| padding_size = img_meta.get('padding_size', [0] * 4) | |
| else: | |
| padding_size = img_meta['img_padding_size'] | |
| padding_left, padding_right, padding_top, padding_bottom =\ | |
| padding_size | |
| # i_seg_logits shape is 1, C, H, W after remove padding | |
| i_seg_logits = seg_logits[i:i + 1, :, | |
| padding_top:H - padding_bottom, | |
| padding_left:W - padding_right] | |
| flip = img_meta.get('flip', None) | |
| if flip: | |
| flip_direction = img_meta.get('flip_direction', None) | |
| assert flip_direction in ['horizontal', 'vertical'] | |
| if flip_direction == 'horizontal': | |
| i_seg_logits = i_seg_logits.flip(dims=(3, )) | |
| else: | |
| i_seg_logits = i_seg_logits.flip(dims=(2, )) | |
| # resize as original shape | |
| i_seg_logits = resize( | |
| i_seg_logits, | |
| size=img_meta['ori_shape'], | |
| mode='bilinear', | |
| align_corners=self.align_corners, | |
| warning=False).squeeze(0) | |
| else: | |
| i_seg_logits = seg_logits[i] | |
| if C > 1: | |
| i_seg_pred = i_seg_logits.argmax(dim=0, keepdim=True) | |
| else: | |
| i_seg_logits = i_seg_logits.sigmoid() | |
| i_seg_pred = (i_seg_logits > | |
| self.decode_head.threshold).to(i_seg_logits) | |
| data_samples[i].set_data({ | |
| 'seg_logits': | |
| PixelData(**{'data': i_seg_logits}), | |
| 'pred_sem_seg': | |
| PixelData(**{'data': i_seg_pred}) | |
| }) | |
| return data_samples | |