Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import argparse | |
| import os.path as osp | |
| from collections import OrderedDict | |
| import mmengine | |
| import torch | |
| from mmengine.runner import CheckpointLoader | |
| def convert_key_name(ckpt): | |
| new_ckpt = OrderedDict() | |
| for k, v in ckpt.items(): | |
| key_list = k.split('.') | |
| if key_list[0] == 'clip_visual_extractor': | |
| new_transform_name = 'image_encoder' | |
| if key_list[1] == 'class_embedding': | |
| new_name = '.'.join([new_transform_name, 'cls_token']) | |
| elif key_list[1] == 'positional_embedding': | |
| new_name = '.'.join([new_transform_name, 'pos_embed']) | |
| elif key_list[1] == 'conv1': | |
| new_name = '.'.join([ | |
| new_transform_name, 'patch_embed.projection', key_list[2] | |
| ]) | |
| elif key_list[1] == 'ln_pre': | |
| new_name = '.'.join( | |
| [new_transform_name, key_list[1], key_list[2]]) | |
| elif key_list[1] == 'resblocks': | |
| new_layer_name = 'layers' | |
| layer_index = key_list[2] | |
| paras = key_list[3:] | |
| if paras[0] == 'ln_1': | |
| new_para_name = '.'.join(['ln1'] + key_list[4:]) | |
| elif paras[0] == 'attn': | |
| new_para_name = '.'.join(['attn.attn'] + key_list[4:]) | |
| elif paras[0] == 'ln_2': | |
| new_para_name = '.'.join(['ln2'] + key_list[4:]) | |
| elif paras[0] == 'mlp': | |
| if paras[1] == 'c_fc': | |
| new_para_name = '.'.join(['ffn.layers.0.0'] + | |
| key_list[-1:]) | |
| else: | |
| new_para_name = '.'.join(['ffn.layers.1'] + | |
| key_list[-1:]) | |
| new_name = '.'.join([ | |
| new_transform_name, new_layer_name, layer_index, | |
| new_para_name | |
| ]) | |
| elif key_list[0] == 'side_adapter_network': | |
| decode_head_name = 'decode_head' | |
| module_name = 'side_adapter_network' | |
| if key_list[1] == 'vit_model': | |
| if key_list[2] == 'blocks': | |
| layer_name = 'encode_layers' | |
| layer_index = key_list[3] | |
| paras = key_list[4:] | |
| if paras[0] == 'norm1': | |
| new_para_name = '.'.join(['ln1'] + key_list[5:]) | |
| elif paras[0] == 'attn': | |
| new_para_name = '.'.join(key_list[4:]) | |
| new_para_name = new_para_name.replace( | |
| 'attn.qkv.', 'attn.attn.in_proj_') | |
| new_para_name = new_para_name.replace( | |
| 'attn.proj', 'attn.attn.out_proj') | |
| elif paras[0] == 'norm2': | |
| new_para_name = '.'.join(['ln2'] + key_list[5:]) | |
| elif paras[0] == 'mlp': | |
| new_para_name = '.'.join(['ffn'] + key_list[5:]) | |
| new_para_name = new_para_name.replace( | |
| 'fc1', 'layers.0.0') | |
| new_para_name = new_para_name.replace( | |
| 'fc2', 'layers.1') | |
| else: | |
| print(f'Wrong for {k}') | |
| new_name = '.'.join([ | |
| decode_head_name, module_name, layer_name, layer_index, | |
| new_para_name | |
| ]) | |
| elif key_list[2] == 'pos_embed': | |
| new_name = '.'.join( | |
| [decode_head_name, module_name, 'pos_embed']) | |
| elif key_list[2] == 'patch_embed': | |
| new_name = '.'.join([ | |
| decode_head_name, module_name, 'patch_embed', | |
| 'projection', key_list[4] | |
| ]) | |
| else: | |
| print(f'Wrong for {k}') | |
| elif key_list[1] == 'query_embed' or key_list[ | |
| 1] == 'query_pos_embed': | |
| new_name = '.'.join( | |
| [decode_head_name, module_name, key_list[1]]) | |
| elif key_list[1] == 'fusion_layers': | |
| layer_name = 'conv_clips' | |
| layer_index = key_list[2][-1] | |
| paras = '.'.join(key_list[3:]) | |
| new_para_name = paras.replace('input_proj.0', '0') | |
| new_para_name = new_para_name.replace('input_proj.1', '1.conv') | |
| new_name = '.'.join([ | |
| decode_head_name, module_name, layer_name, layer_index, | |
| new_para_name | |
| ]) | |
| elif key_list[1] == 'mask_decoder': | |
| new_name = 'decode_head.' + k | |
| else: | |
| print(f'Wrong for {k}') | |
| elif key_list[0] == 'clip_rec_head': | |
| module_name = 'rec_with_attnbias' | |
| if key_list[1] == 'proj': | |
| new_name = '.'.join( | |
| [decode_head_name, module_name, 'proj.weight']) | |
| elif key_list[1] == 'ln_post': | |
| new_name = '.'.join( | |
| [decode_head_name, module_name, 'ln_post', key_list[2]]) | |
| elif key_list[1] == 'resblocks': | |
| new_layer_name = 'layers' | |
| layer_index = key_list[2] | |
| paras = key_list[3:] | |
| if paras[0] == 'ln_1': | |
| new_para_name = '.'.join(['norms.0'] + paras[1:]) | |
| elif paras[0] == 'attn': | |
| new_para_name = '.'.join(['attentions.0.attn'] + paras[1:]) | |
| elif paras[0] == 'ln_2': | |
| new_para_name = '.'.join(['norms.1'] + paras[1:]) | |
| elif paras[0] == 'mlp': | |
| if paras[1] == 'c_fc': | |
| new_para_name = '.'.join(['ffns.0.layers.0.0'] + | |
| paras[2:]) | |
| elif paras[1] == 'c_proj': | |
| new_para_name = '.'.join(['ffns.0.layers.1'] + | |
| paras[2:]) | |
| else: | |
| print(f'Wrong for {k}') | |
| new_name = '.'.join([ | |
| decode_head_name, module_name, new_layer_name, layer_index, | |
| new_para_name | |
| ]) | |
| else: | |
| print(f'Wrong for {k}') | |
| elif key_list[0] == 'ov_classifier': | |
| text_encoder_name = 'text_encoder' | |
| if key_list[1] == 'transformer': | |
| layer_name = 'transformer' | |
| layer_index = key_list[3] | |
| paras = key_list[4:] | |
| if paras[0] == 'attn': | |
| new_para_name = '.'.join(['attentions.0.attn'] + paras[1:]) | |
| elif paras[0] == 'ln_1': | |
| new_para_name = '.'.join(['norms.0'] + paras[1:]) | |
| elif paras[0] == 'ln_2': | |
| new_para_name = '.'.join(['norms.1'] + paras[1:]) | |
| elif paras[0] == 'mlp': | |
| if paras[1] == 'c_fc': | |
| new_para_name = '.'.join(['ffns.0.layers.0.0'] + | |
| paras[2:]) | |
| elif paras[1] == 'c_proj': | |
| new_para_name = '.'.join(['ffns.0.layers.1'] + | |
| paras[2:]) | |
| else: | |
| print(f'Wrong for {k}') | |
| else: | |
| print(f'Wrong for {k}') | |
| new_name = '.'.join([ | |
| text_encoder_name, layer_name, layer_index, new_para_name | |
| ]) | |
| elif key_list[1] in [ | |
| 'positional_embedding', 'text_projection', 'bg_embed', | |
| 'attn_mask', 'logit_scale', 'token_embedding', 'ln_final' | |
| ]: | |
| new_name = k.replace('ov_classifier', 'text_encoder') | |
| else: | |
| print(f'Wrong for {k}') | |
| elif key_list[0] == 'criterion': | |
| new_name = k | |
| else: | |
| print(f'Wrong for {k}') | |
| new_ckpt[new_name] = v | |
| return new_ckpt | |
| def convert_tensor(ckpt): | |
| cls_token = ckpt['image_encoder.cls_token'] | |
| new_cls_token = cls_token.unsqueeze(0).unsqueeze(0) | |
| ckpt['image_encoder.cls_token'] = new_cls_token | |
| pos_embed = ckpt['image_encoder.pos_embed'] | |
| new_pos_embed = pos_embed.unsqueeze(0) | |
| ckpt['image_encoder.pos_embed'] = new_pos_embed | |
| proj_weight = ckpt['decode_head.rec_with_attnbias.proj.weight'] | |
| new_proj_weight = proj_weight.transpose(1, 0) | |
| ckpt['decode_head.rec_with_attnbias.proj.weight'] = new_proj_weight | |
| return ckpt | |
| def main(): | |
| parser = argparse.ArgumentParser( | |
| description='Convert keys in timm pretrained vit models to ' | |
| 'MMSegmentation style.') | |
| parser.add_argument('src', help='src model path or url') | |
| # The dst path must be a full path of the new checkpoint. | |
| parser.add_argument('dst', help='save path') | |
| args = parser.parse_args() | |
| checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') | |
| if 'state_dict' in checkpoint: | |
| # timm checkpoint | |
| state_dict = checkpoint['state_dict'] | |
| elif 'model' in checkpoint: | |
| # deit checkpoint | |
| state_dict = checkpoint['model'] | |
| else: | |
| state_dict = checkpoint | |
| weight = convert_key_name(state_dict) | |
| weight = convert_tensor(weight) | |
| mmengine.mkdir_or_exist(osp.dirname(args.dst)) | |
| torch.save(weight, args.dst) | |
| if __name__ == '__main__': | |
| main() | |