Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import argparse | |
| import logging | |
| import os | |
| import os.path as osp | |
| from mmengine.config import Config, DictAction | |
| from mmengine.logging import print_log | |
| from mmengine.runner import Runner | |
| from mmseg.registry import RUNNERS | |
| import torch | |
| import json | |
| import numpy as np | |
| def initialize_model_stitching_layer(model, data_loader): | |
| print(data_loader) | |
| # print(next(iter(data_loader))) | |
| dataiter = iter(data_loader) | |
| images = [] | |
| total_samples = 50 | |
| batch_size = data_loader.batch_size | |
| num_iter = total_samples // batch_size | |
| for i in range(num_iter): | |
| item = next(dataiter) | |
| images.append(item['img'].data[0]) | |
| images = torch.cat(images, dim=0) | |
| samples = images.to(model.device, non_blocking=True) | |
| model.backbone.initialize_stitching_weights(samples) | |
| def group_subnets_by_flops(data, flops_step=10): | |
| sorted_data = {k: v for k, v in sorted(data.items(), key=lambda item: item[1])} | |
| candidate_idx = [] | |
| grouped_cands = [] | |
| last_flops = 0 | |
| for cfg_id, flops in sorted_data.items(): | |
| # flops, _ = values | |
| flops = flops // 1e9 | |
| if abs(last_flops - flops) > flops_step: | |
| if len(candidate_idx) > 0: | |
| grouped_cands.append(candidate_idx) | |
| candidate_idx = [int(cfg_id)] | |
| last_flops = flops | |
| else: | |
| candidate_idx.append(int(cfg_id)) | |
| if len(candidate_idx) > 0: | |
| grouped_cands.append(candidate_idx) | |
| return grouped_cands | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description='Train a segmentor') | |
| parser.add_argument('config', help='train config file path') | |
| parser.add_argument('--work-dir', help='the dir to save logs and models') | |
| parser.add_argument( | |
| '--resume', | |
| action='store_true', | |
| default=False, | |
| help='resume from the latest checkpoint in the work_dir automatically') | |
| parser.add_argument( | |
| '--amp', | |
| action='store_true', | |
| default=False, | |
| help='enable automatic-mixed-precision training') | |
| parser.add_argument( | |
| '--cfg-options', | |
| nargs='+', | |
| action=DictAction, | |
| help='override some settings in the used config, the key-value pair ' | |
| 'in xxx=yyy format will be merged into config file. If the value to ' | |
| 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
| 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
| 'Note that the quotation marks are necessary and that no white space ' | |
| 'is allowed.') | |
| parser.add_argument( | |
| '--launcher', | |
| choices=['none', 'pytorch', 'slurm', 'mpi'], | |
| default='none', | |
| help='job launcher') | |
| # When using PyTorch version >= 2.0.0, the `torch.distributed.launch` | |
| # will pass the `--local-rank` parameter to `tools/train.py` instead | |
| # of `--local_rank`. | |
| parser.add_argument('--local_rank', '--local-rank', type=int, default=0) | |
| args = parser.parse_args() | |
| if 'LOCAL_RANK' not in os.environ: | |
| os.environ['LOCAL_RANK'] = str(args.local_rank) | |
| return args | |
| def main(): | |
| args = parse_args() | |
| # load config | |
| cfg = Config.fromfile(args.config) | |
| cfg.launcher = args.launcher | |
| if args.cfg_options is not None: | |
| cfg.merge_from_dict(args.cfg_options) | |
| # work_dir is determined in this priority: CLI > segment in file > filename | |
| if args.work_dir is not None: | |
| # update configs according to CLI args if args.work_dir is not None | |
| cfg.work_dir = args.work_dir | |
| elif cfg.get('work_dir', None) is None: | |
| # use config filename as default work_dir if cfg.work_dir is None | |
| cfg.work_dir = osp.join('./work_dirs', | |
| osp.splitext(osp.basename(args.config))[0]) | |
| # enable automatic-mixed-precision training | |
| if args.amp is True: | |
| optim_wrapper = cfg.optim_wrapper.type | |
| if optim_wrapper == 'AmpOptimWrapper': | |
| print_log( | |
| 'AMP training is already enabled in your config.', | |
| logger='current', | |
| level=logging.WARNING) | |
| else: | |
| assert optim_wrapper == 'OptimWrapper', ( | |
| '`--amp` is only supported when the optimizer wrapper type is ' | |
| f'`OptimWrapper` but got {optim_wrapper}.') | |
| cfg.optim_wrapper.type = 'AmpOptimWrapper' | |
| cfg.optim_wrapper.loss_scale = 'dynamic' | |
| # resume training | |
| cfg.resume = args.resume | |
| # build the runner from config | |
| if 'runner_type' not in cfg: | |
| # build the default runner | |
| runner = Runner.from_cfg(cfg) | |
| else: | |
| # build customized runner from the registry | |
| # if 'runner_type' is set in the cfg | |
| runner = RUNNERS.build(cfg) | |
| # start training | |
| runner.train() | |
| if __name__ == '__main__': | |
| main() | |