File size: 6,608 Bytes
d7f4607 76ecb56 d7f4607 8b1a796 d7f4607 36cc3ec 8b1a796 36cc3ec 8b1a796 36cc3ec 5f029c0 36cc3ec 5f029c0 36cc3ec 5f029c0 36cc3ec 8b1a796 36cc3ec 8b1a796 36cc3ec 5f029c0 8b1a796 36cc3ec 8b1a796 5f029c0 8b1a796 5f029c0 8b1a796 36cc3ec 5f029c0 36cc3ec 5f029c0 36cc3ec 5f029c0 36cc3ec 5f029c0 36cc3ec 5f029c0 36cc3ec 5f029c0 36cc3ec 8b1a796 36cc3ec 5f029c0 8b1a796 5f029c0 8b1a796 5f029c0 36cc3ec 5f029c0 8b1a796 5f029c0 8b1a796 36cc3ec 8b1a796 36cc3ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
---
language:
- en
pipeline_tag: text-classification
library_name: peft
base_model: microsoft/deberta-v3-large
datasets:
- stealthcode/ai-detection
tags:
- lora
- ai-detection
- binary-classification
- deberta-v3-large
metrics:
- accuracy
- f1
- auroc
- average_precision
model-index:
- name: AI Detector LoRA (DeBERTa-v3-large)
results:
- task:
type: text-classification
name: AI Text Detection
dataset:
name: stealthcode/ai-detection
type: stealthcode/ai-detection
metrics:
- type: auroc
value: 0.9985
- type: f1
value: 0.9812
- type: accuracy
value: 0.9814
---
# AI Detector LoRA (DeBERTa-v3-large)
LoRA adapter for binary AI-text vs Human-text detection, trained on ~2.7M English samples
(`label: 1 = AI, 0 = Human`) using `microsoft/deberta-v3-large` as the base model.
- **Base model:** `microsoft/deberta-v3-large`
- **Task:** Binary classification (AI vs Human)
- **Head:** Single-logit + `BCEWithLogitsLoss`
- **Adapter type:** LoRA (`peft`)
- **Hardware:** 8 x RTX 5090, bf16, multi-GPU
- **Final decision threshold:** **0.8697** (max-F1 on calibration set)
---
## Files in this repo
- `adapter/` – LoRA weights saved with `peft_model.save_pretrained(...)`
- `merged_model/` – fully merged model (base + LoRA) for standalone use
- `threshold.json` – chosen deployment threshold and validation F1
- `calibration.json` – temperature scaling parameters and calibration metrics
- `results.json` – hyperparameters, validation threshold search, test metrics
- `training_log_history.csv` – raw Trainer log history
- `predictions_calib.csv` – calibration-set probabilities and labels
- `predictions_test.csv` – test probabilities and labels
- `figures/` – training and evaluation plots
- `README.md` – this file
---
## Metrics (test set, n=279,241)
Using threshold **0.8697**:
| Metric | Value |
| ---------------------- | ------ |
| AUROC | 0.9985 |
| Average Precision (AP) | 0.9985 |
| F1 | 0.9812 |
| Accuracy | 0.9814 |
| Precision (AI) | 0.9902 |
| Recall (AI) | 0.9724 |
| Precision (Human) | 0.9728 |
| Recall (Human) | 0.9904 |
Confusion matrix (test):
- **True Negatives (Human correctly)**: 138,276
- **False Positives (Human → AI)**: 1,345
- **False Negatives (AI → Human)**: 3,859
- **True Positives (AI correctly)**: 135,761
### Calibration
- **Method:** temperature scaling
- **Temperature (T):** 1.4437
- **Calibration set:** calibration
- Test ECE: 0.0075 → 0.0116 (after calibration)
- Test Brier: 0.0157 → 0.0156 (after calibration)
---
## Plots
### Training & validation
- Learning curves:

- Eval metrics over time:

### Validation set
- ROC:

- Precision–Recall:

- Calibration curve:

- F1 vs threshold:

### Test set
- ROC:

- Precision–Recall:

- Calibration curve:

- Confusion matrix:

---
## Usage
### Load base + LoRA adapter
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from peft import PeftModel
import torch
import json
base_model_id = "microsoft/deberta-v3-large"
adapter_id = "stealthcode/ai-detection" # or local: "./adapter"
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
base_model = AutoModelForSequenceClassification.from_pretrained(
base_model_id,
num_labels=1, # single logit for BCEWithLogitsLoss
)
model = PeftModel.from_pretrained(base_model, adapter_id)
model.eval()
```
### Inference with threshold
```python
# load threshold
with open("threshold.json") as f:
thr = json.load(f)["threshold"] # 0.8697
def predict_proba(texts):
enc = tokenizer(
texts,
padding=True,
truncation=True,
max_length=512,
return_tensors="pt",
)
with torch.no_grad():
logits = model(**enc).logits.squeeze(-1)
probs = torch.sigmoid(logits)
return probs.cpu().numpy()
def predict_label(texts, threshold=thr):
probs = predict_proba(texts)
return (probs >= threshold).astype(int)
# example
texts = ["Some example text to classify"]
probs = predict_proba(texts)
labels = predict_label(texts)
print(probs, labels) # label 1 = AI, 0 = Human
```
### Load merged model (no PEFT required)
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch, json
model_dir = "./merged_model"
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSequenceClassification.from_pretrained(model_dir)
model.eval()
with open("threshold.json") as f:
thr = json.load(f)["threshold"] # 0.8697
def predict_proba(texts):
enc = tokenizer(texts, padding=True, truncation=True, max_length=512, return_tensors="pt")
with torch.no_grad():
logits = model(**enc).logits.squeeze(-1)
probs = torch.sigmoid(logits)
return probs.cpu().numpy()
```
### Optional: apply temperature scaling to logits
```python
import json
with open("calibration.json") as f:
T = json.load(f)["temperature"] # e.g., 1.4437
def predict_proba_calibrated(texts):
enc = tokenizer(texts, padding=True, truncation=True, max_length=512, return_tensors="pt")
with torch.no_grad():
logits = model(**enc).logits.squeeze(-1)
probs = torch.sigmoid(logits / T)
return probs.cpu().numpy()
```
---
## Notes
- Classifier head is **trainable** together with LoRA layers (unfrozen after applying PEFT).
- **LoRA config:**
- `r=32`, `alpha=128`, `dropout=0.0`
- Target modules: `query_proj`, `key_proj`, `value_proj`
- **Training config:**
- `bf16=True`
- `optim="adamw_torch_fused"`
- `lr_scheduler_type="cosine_with_restarts"`
- `num_train_epochs=2`
- `per_device_train_batch_size=8`, `gradient_accumulation_steps=4`
- `max_grad_norm=0.5`
- Threshold `0.8697` was chosen as the **max-F1** point on the calibration set.
You can adjust it if you prefer fewer false positives or fewer false negatives.
|