Commit
·
14292f0
1
Parent(s):
d5efa8b
🍒 Upload config, checkpoint for mb_melgan Chinese.
Browse files- config.yml +106 -0
- model.h5 +3 -0
config.yml
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This is the hyperparameter configuration file for Multi-Band MelGAN.
|
| 2 |
+
# Please make sure this is adjusted for the Baker dataset. If you want to
|
| 3 |
+
# apply to the other dataset, you might need to carefully change some parameters.
|
| 4 |
+
# This configuration performs 1000k iters.
|
| 5 |
+
|
| 6 |
+
###########################################################
|
| 7 |
+
# FEATURE EXTRACTION SETTING #
|
| 8 |
+
###########################################################
|
| 9 |
+
sampling_rate: 24000
|
| 10 |
+
hop_size: 300 # Hop size.
|
| 11 |
+
format: "npy"
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
###########################################################
|
| 15 |
+
# GENERATOR NETWORK ARCHITECTURE SETTING #
|
| 16 |
+
###########################################################
|
| 17 |
+
model_type: "multiband_melgan_generator"
|
| 18 |
+
|
| 19 |
+
multiband_melgan_generator_params:
|
| 20 |
+
out_channels: 4 # Number of output channels (number of subbands).
|
| 21 |
+
kernel_size: 7 # Kernel size of initial and final conv layers.
|
| 22 |
+
filters: 384 # Initial number of channels for conv layers.
|
| 23 |
+
upsample_scales: [3, 5, 5] # List of Upsampling scales.
|
| 24 |
+
stack_kernel_size: 3 # Kernel size of dilated conv layers in residual stack.
|
| 25 |
+
stacks: 4 # Number of stacks in a single residual stack module.
|
| 26 |
+
is_weight_norm: false # Use weight-norm or not.
|
| 27 |
+
|
| 28 |
+
###########################################################
|
| 29 |
+
# DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
|
| 30 |
+
###########################################################
|
| 31 |
+
multiband_melgan_discriminator_params:
|
| 32 |
+
out_channels: 1 # Number of output channels.
|
| 33 |
+
scales: 3 # Number of multi-scales.
|
| 34 |
+
downsample_pooling: "AveragePooling1D" # Pooling type for the input downsampling.
|
| 35 |
+
downsample_pooling_params: # Parameters of the above pooling function.
|
| 36 |
+
pool_size: 4
|
| 37 |
+
strides: 2
|
| 38 |
+
kernel_sizes: [5, 3] # List of kernel size.
|
| 39 |
+
filters: 16 # Number of channels of the initial conv layer.
|
| 40 |
+
max_downsample_filters: 512 # Maximum number of channels of downsampling layers.
|
| 41 |
+
downsample_scales: [4, 4, 4] # List of downsampling scales.
|
| 42 |
+
nonlinear_activation: "LeakyReLU" # Nonlinear activation function.
|
| 43 |
+
nonlinear_activation_params: # Parameters of nonlinear activation function.
|
| 44 |
+
alpha: 0.2
|
| 45 |
+
is_weight_norm: false # Use weight-norm or not.
|
| 46 |
+
|
| 47 |
+
###########################################################
|
| 48 |
+
# STFT LOSS SETTING #
|
| 49 |
+
###########################################################
|
| 50 |
+
stft_loss_params:
|
| 51 |
+
fft_lengths: [1024, 2048, 512] # List of FFT size for STFT-based loss.
|
| 52 |
+
frame_steps: [120, 240, 50] # List of hop size for STFT-based loss
|
| 53 |
+
frame_lengths: [600, 1200, 240] # List of window length for STFT-based loss.
|
| 54 |
+
|
| 55 |
+
subband_stft_loss_params:
|
| 56 |
+
fft_lengths: [384, 683, 171] # List of FFT size for STFT-based loss.
|
| 57 |
+
frame_steps: [30, 60, 10] # List of hop size for STFT-based loss
|
| 58 |
+
frame_lengths: [150, 300, 60] # List of window length for STFT-based loss.
|
| 59 |
+
|
| 60 |
+
###########################################################
|
| 61 |
+
# ADVERSARIAL LOSS SETTING #
|
| 62 |
+
###########################################################
|
| 63 |
+
lambda_feat_match: 10.0 # Loss balancing coefficient for feature matching loss
|
| 64 |
+
lambda_adv: 2.5 # Loss balancing coefficient for adversarial loss.
|
| 65 |
+
|
| 66 |
+
###########################################################
|
| 67 |
+
# DATA LOADER SETTING #
|
| 68 |
+
###########################################################
|
| 69 |
+
batch_size: 64 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1.
|
| 70 |
+
batch_max_steps: 9600 # Length of each audio in batch for training. Make sure dividable by hop_size.
|
| 71 |
+
batch_max_steps_valid: 48000 # Length of each audio for validation. Make sure dividable by hope_size.
|
| 72 |
+
remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.
|
| 73 |
+
allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory.
|
| 74 |
+
is_shuffle: true # shuffle dataset after each epoch.
|
| 75 |
+
|
| 76 |
+
###########################################################
|
| 77 |
+
# OPTIMIZER & SCHEDULER SETTING #
|
| 78 |
+
###########################################################
|
| 79 |
+
generator_optimizer_params:
|
| 80 |
+
lr_fn: "PiecewiseConstantDecay"
|
| 81 |
+
lr_params:
|
| 82 |
+
boundaries: [100000, 200000, 300000, 400000, 500000, 600000, 700000]
|
| 83 |
+
values: [0.001, 0.0005, 0.00025, 0.000125, 0.0000625, 0.00003125, 0.000015625, 0.000001]
|
| 84 |
+
amsgrad: false
|
| 85 |
+
|
| 86 |
+
discriminator_optimizer_params:
|
| 87 |
+
lr_fn: "PiecewiseConstantDecay"
|
| 88 |
+
lr_params:
|
| 89 |
+
boundaries: [100000, 200000, 300000, 400000, 500000]
|
| 90 |
+
values: [0.00025, 0.000125, 0.0000625, 0.00003125, 0.000015625, 0.000001]
|
| 91 |
+
amsgrad: false
|
| 92 |
+
|
| 93 |
+
gradient_accumulation_steps: 1
|
| 94 |
+
###########################################################
|
| 95 |
+
# INTERVAL SETTING #
|
| 96 |
+
###########################################################
|
| 97 |
+
discriminator_train_start_steps: 200000 # steps begin training discriminator
|
| 98 |
+
train_max_steps: 4000000 # Number of training steps.
|
| 99 |
+
save_interval_steps: 20000 # Interval steps to save checkpoint.
|
| 100 |
+
eval_interval_steps: 5000 # Interval steps to evaluate the network.
|
| 101 |
+
log_interval_steps: 200 # Interval steps to record the training log.
|
| 102 |
+
|
| 103 |
+
###########################################################
|
| 104 |
+
# OTHER SETTING #
|
| 105 |
+
###########################################################
|
| 106 |
+
num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results.
|
model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:52785c0e4d278b5ce12baa3f74bc4b412c29a44512e4615a59f9fbad0cdd985b
|
| 3 |
+
size 7543376
|