---
license: cc-by-nc-4.0
base_model: google/gemma-3-4b-it
tags:
- research
- conversational-ai
- conversational
- reasoning
- alignment
- gemma
- vanta-research
- chatbot
- friendly
- persona-ai
- LLM
- text-generation
- research
- gemma3
- fine-tune
- cognitive
- cognitive-fit
language:
- en
pipeline_tag: text-generation
base_model_relation: finetune
library_name: transformers
---

VANTA Research
Independent AI research lab building safe, resilient language models optimized for human-AI collaboration
---
# Atom V1 Preview
**Atom** is an AI assistant developed by VANTA Research focused on collaborative exploration, curiosity-driven dialogue, and pedagogical reasoning. This preview release represents an early R&D iteration built on the Gemma3 architecture
## Model Description
Atom v1 Preview is a fine-tuned language model designed to embody:
- **Collaborative Exploration**: Engages users through clarifying questions and co-reasoning
- **Analogical Thinking**: Employs metaphors and analogies to explain complex concepts
- **Enthusiasm for Discovery**: Celebrates insights and maintains genuine curiosity
- **Pedagogical Depth**: Provides detailed, thorough explanations that guide reasoning processes
This model was developed as a research prototype to explore personality-driven fine-tuning and human-AI collaboration patterns before scaling to larger architectures.
## Technical Specifications
- **Base Model**: google/gemma-3-4b-it
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation via PEFT)
- **Training Framework**: Transformers, PEFT, TRL
- **Quantization**: 4-bit (nf4) during training
- **Final Format**: Full precision merged model (FP16)
- **Parameters**: ~4B
- **Context Length**: 128K tokens
- **Vocabulary Size**: 262K tokens
### LoRA Configuration
```
Stage 1 (Personality): r=16, alpha=32, dropout=0.05, 2 epochs
Stage 2 (Attribution): r=8, alpha=16, dropout=0.02, 2 epochs
Stage 3 (Verbosity): r=4, alpha=8, dropout=0.01, 1 epoch
```
## Intended Use
### Primary Use Cases
- Educational dialogue and concept explanation
- Collaborative research assistance
- Exploratory reasoning and brainstorming
- Pedagogical applications requiring detailed explanations
- Research into AI personality and interaction patterns
### Out-of-Scope Uses
- Production deployment without further evaluation
- High-stakes decision making
- Commercial applications (see license)
- Critical infrastructure or safety-critical systems
- Medical, legal, or financial advice
## Usage
This repository includes both PyTorch (safetensors) and GGUF formats:
- **PyTorch format**: Use with Transformers for GPU inference
- **GGUF format** (`atom-v1-preview-4b.gguf`): Use with llama.cpp or Ollama for efficient CPU/GPU inference
### Loading the Model
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_name = "vanta-research/atom-v1-preview"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
```
### Inference Example
```python
messages = [
{"role": "user", "content": "Explain quantum entanglement like I'm 5"}
]
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=512,
temperature=0.8,
top_p=0.9,
top_k=40,
do_sample=True
)
response = tokenizer.decode(outputs[0][input_ids.shape[1]:], skip_special_tokens=True)
print(response)
```
### Using GGUF with llama.cpp or Ollama
A quantized GGUF version (`atom-v1-preview-4b.gguf`) is included for efficient CPU/GPU inference:
**With llama.cpp:**
```bash
./llama-cli -m atom-v1-preview-4b.gguf -p "Explain quantum entanglement" --temp 0.8 --top-p 0.9
```
**With Ollama:**
```bash
# Create Modelfile
cat > Modelfile <