|
|
--- |
|
|
language: |
|
|
- en |
|
|
license: apache-2.0 |
|
|
datasets: |
|
|
- cerebras/SlimPajama-627B |
|
|
- bigcode/starcoderdata |
|
|
- timdettmers/openassistant-guanaco |
|
|
model-index: |
|
|
- name: TinyLlama-1.1B-Chat-v0.1 |
|
|
results: |
|
|
- task: |
|
|
type: text-generation |
|
|
name: Text Generation |
|
|
dataset: |
|
|
name: IFEval (0-Shot) |
|
|
type: HuggingFaceH4/ifeval |
|
|
args: |
|
|
num_few_shot: 0 |
|
|
metrics: |
|
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
|
value: 14.79 |
|
|
name: strict accuracy |
|
|
source: |
|
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v0.1 |
|
|
name: Open LLM Leaderboard |
|
|
- task: |
|
|
type: text-generation |
|
|
name: Text Generation |
|
|
dataset: |
|
|
name: BBH (3-Shot) |
|
|
type: BBH |
|
|
args: |
|
|
num_few_shot: 3 |
|
|
metrics: |
|
|
- type: acc_norm |
|
|
value: 3.36 |
|
|
name: normalized accuracy |
|
|
source: |
|
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v0.1 |
|
|
name: Open LLM Leaderboard |
|
|
- task: |
|
|
type: text-generation |
|
|
name: Text Generation |
|
|
dataset: |
|
|
name: MATH Lvl 5 (4-Shot) |
|
|
type: hendrycks/competition_math |
|
|
args: |
|
|
num_few_shot: 4 |
|
|
metrics: |
|
|
- type: exact_match |
|
|
value: 0.0 |
|
|
name: exact match |
|
|
source: |
|
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v0.1 |
|
|
name: Open LLM Leaderboard |
|
|
- task: |
|
|
type: text-generation |
|
|
name: Text Generation |
|
|
dataset: |
|
|
name: GPQA (0-shot) |
|
|
type: Idavidrein/gpqa |
|
|
args: |
|
|
num_few_shot: 0 |
|
|
metrics: |
|
|
- type: acc_norm |
|
|
value: 0.0 |
|
|
name: acc_norm |
|
|
source: |
|
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v0.1 |
|
|
name: Open LLM Leaderboard |
|
|
- task: |
|
|
type: text-generation |
|
|
name: Text Generation |
|
|
dataset: |
|
|
name: MuSR (0-shot) |
|
|
type: TAUR-Lab/MuSR |
|
|
args: |
|
|
num_few_shot: 0 |
|
|
metrics: |
|
|
- type: acc_norm |
|
|
value: 3.9 |
|
|
name: acc_norm |
|
|
source: |
|
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v0.1 |
|
|
name: Open LLM Leaderboard |
|
|
- task: |
|
|
type: text-generation |
|
|
name: Text Generation |
|
|
dataset: |
|
|
name: MMLU-PRO (5-shot) |
|
|
type: TIGER-Lab/MMLU-Pro |
|
|
config: main |
|
|
split: test |
|
|
args: |
|
|
num_few_shot: 5 |
|
|
metrics: |
|
|
- type: acc |
|
|
value: 1.09 |
|
|
name: accuracy |
|
|
source: |
|
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v0.1 |
|
|
name: Open LLM Leaderboard |
|
|
--- |
|
|
<div align="center"> |
|
|
|
|
|
# TinyLlama-1.1B |
|
|
</div> |
|
|
|
|
|
https://github.com/jzhang38/TinyLlama |
|
|
|
|
|
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ๐๐. The training has started on 2023-09-01. |
|
|
|
|
|
<div align="center"> |
|
|
<img src="./TinyLlama_logo.png" width="300"/> |
|
|
</div> |
|
|
|
|
|
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. |
|
|
|
|
|
#### This Model |
|
|
This is the chat model finetuned on [PY007/TinyLlama-1.1B-intermediate-step-240k-503b](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-240k-503b). The dataset used is [openassistant-guananco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco). |
|
|
|
|
|
#### How to use |
|
|
You will need the transformers>=4.31 |
|
|
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information. |
|
|
```python |
|
|
from transformers import AutoTokenizer |
|
|
import transformers |
|
|
import torch |
|
|
model = "PY007/TinyLlama-1.1B-Chat-v0.1" |
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
|
pipeline = transformers.pipeline( |
|
|
"text-generation", |
|
|
model=model, |
|
|
torch_dtype=torch.float16, |
|
|
device_map="auto", |
|
|
) |
|
|
|
|
|
prompt = "What are the values in open source projects?" |
|
|
formatted_prompt = ( |
|
|
f"### Human: {prompt}### Assistant:" |
|
|
) |
|
|
|
|
|
|
|
|
sequences = pipeline( |
|
|
formatted_prompt, |
|
|
do_sample=True, |
|
|
top_k=50, |
|
|
top_p = 0.7, |
|
|
num_return_sequences=1, |
|
|
repetition_penalty=1.1, |
|
|
max_new_tokens=500, |
|
|
) |
|
|
for seq in sequences: |
|
|
print(f"Result: {seq['generated_text']}") |
|
|
``` |
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TinyLlama__TinyLlama-1.1B-Chat-v0.1) |
|
|
|
|
|
| Metric |Value| |
|
|
|-------------------|----:| |
|
|
|Avg. | 3.86| |
|
|
|IFEval (0-Shot) |14.79| |
|
|
|BBH (3-Shot) | 3.36| |
|
|
|MATH Lvl 5 (4-Shot)| 0.00| |
|
|
|GPQA (0-shot) | 0.00| |
|
|
|MuSR (0-shot) | 3.90| |
|
|
|MMLU-PRO (5-shot) | 1.09| |
|
|
|
|
|
|