PabloAccuosto's picture
Upload README.md with huggingface_hub
c1aaa1e verified
---
license: apache-2.0
language:
- ca
- es
- en
task_categories:
- text-generation
tags:
- query-parsing
- structured-output
- json-generation
- multilingual
- catalan
- spanish
- R&D
- semantic-search
- AINA
- semantic-parsing
size_categories:
- n<1K
---
# IMPULS Query Parsing Dataset
A multilingual dataset for training and evaluating query parsing models that convert natural language queries into structured JSON for R&D project semantic search.
## Dataset Description
This dataset was created as part of the **IMPULS project** (AINA Challenge 2024), a collaboration between [SIRIS Academic](https://sirisacademic.com/) and [Generalitat de Catalunya](https://web.gencat.cat/) to build a multilingual semantic search system for R&D ecosystems.
The dataset contains natural language queries in **Catalan, Spanish, and English** paired with their structured JSON representations, designed for training models to:
- Extract semantic search terms from natural language
- Identify structured filters (funding programme, year, location, organization type)
- Detect query language and intent
### Supported Tasks
- **Query Parsing / Semantic Parsing**: Convert natural language to structured JSON
- **Information Extraction**: Extract entities and filters from queries
- **Multilingual NLU**: Understanding queries across CA/ES/EN
## Dataset Structure
### Data Splits
| Split | Examples | Description |
|-------|----------|-------------|
| `train` | 682 | Synthetic, template-generated queries |
| `test` | 100 | Real queries from domain experts |
### Schema
Each example contains a structured JSON with the following fields:
```json
{
"doc_type": "projects",
"filters": {
"programme": "Horizon 2020 | FEDER | SIFECAT | null",
"funding_level": "string | null",
"year": ">=2020 | 2015-2020 | null",
"location": "Catalunya | Spain | null",
"location_level": "region | province | country | null"
},
"organisations": [
{
"type": "university | research_center | hospital | company | null",
"name": "UPC | CSIC | null",
"location": "Barcelona | null",
"location_level": "province | region | null"
}
],
"semantic_query": "intel·ligència artificial salut",
"query_rewrite": "Human-readable interpretation of the query",
"meta": {
"id": "TRAIN_001",
"source": "synthetic | expert",
"lang": "CA | ES | EN",
"original_query": "The original natural language query",
"intent": "Discover | Quantify",
"style": "Concise | Verbose | Technical",
"components": ["Content", "Programme", "Year", "Location"],
"resolvability": "Direct | Adapted | Partial",
"notes": "Optional notes about interpretation"
}
}
```
### Field Descriptions
| Field | Description |
|-------|-------------|
| `doc_type` | Document type to search (always "projects") |
| `filters.programme` | Funding programme (H2020, Horizon Europe, FEDER, SIFECAT, etc.) |
| `filters.year` | Year filter (single year, range, or comparison like ">=2020") |
| `filters.location` | Geographic filter |
| `filters.location_level` | Geographic granularity (country, region, province) |
| `organisations` | List of organization filters with type, name, and location |
| `semantic_query` | Core thematic content for vector search |
| `query_rewrite` | Human-readable interpretation |
| `meta.original_query` | The original natural language query |
| `meta.lang` | Query language (CA/ES/EN) |
| `meta.intent` | Query intent (Discover/Quantify) |
| `meta.resolvability` | How well the query maps to the schema |
## Dataset Statistics
### Language Distribution
| Language | Training | Test |
|----------|----------|------|
| Catalan (CA) | ~33% | ~33% |
| Spanish (ES) | ~33% | ~21% |
| English (EN) | ~33% | ~46% |
### Intent Distribution
| Intent | Count | Percentage |
|--------|-------|------------|
| Discover | 600 | 88.0% |
| Quantify | 82 | 12.0% |
### Resolvability Distribution
| Type | Count | Percentage | Description |
|------|-------|------------|-------------|
| Direct | 529 | 77.6% | Fully mappable to schema |
| Adapted | 15 | 2.2% | Requires interpretation |
| Partial | 138 | 20.2% | Cannot fully express (ranking, aggregation) |
### Component Distribution
| Component | Frequency |
|-----------|-----------|
| Thematic content | 92.8% |
| Organization type | 39.9% |
| Organization location | 17.7% |
| Programme (funding) | 17.6% |
| Time expressions | 10.7% |
| Project location | 10.4% |
| Year (specific) | 7.8% |
| Organization name | 7.3% |
## Examples
### Example 1: Catalan Query (Discover)
**Original query:** `"Projectes on la UPC és coordinadora en l'àmbit de la ciberseguretat"`
```json
{
"doc_type": "projects",
"filters": {
"programme": null,
"funding_level": null,
"year": null,
"location": null,
"location_level": null
},
"organisations": [
{
"type": "university",
"name": "UPC",
"location": null,
"location_level": null
}
],
"semantic_query": "ciberseguretat",
"query_rewrite": "Llista de projectes de la UPC sobre ciberseguretat",
"meta": {
"id": "TRAIN_488",
"source": "synthetic",
"lang": "CA",
"original_query": "Projectes on la UPC és coordinadora en l'àmbit de la ciberseguretat",
"intent": "Discover",
"style": "Concise",
"components": ["Scope", "Organisation Name", "Content", "Role Qualifier"],
"resolvability": "Partial",
"notes": "No es pot filtrar pel rol de 'coordinadora'"
}
}
```
### Example 2: Spanish Query with Filters
**Original query:** `"proyectos de inteligencia artificial financiados por H2020 desde 2019"`
```json
{
"doc_type": "projects",
"filters": {
"programme": "Horizon 2020",
"funding_level": null,
"year": ">=2019",
"location": null,
"location_level": null
},
"organisations": [],
"semantic_query": "inteligencia artificial",
"query_rewrite": "Proyectos sobre inteligencia artificial del programa H2020 desde 2019",
"meta": {
"lang": "ES",
"intent": "Discover",
"resolvability": "Direct"
}
}
```
### Example 3: English Quantify Query
**Original query:** `"how many universities participated in quantum computing projects?"`
```json
{
"doc_type": "projects",
"filters": {
"programme": null,
"funding_level": null,
"year": null,
"location": null,
"location_level": null
},
"organisations": [
{
"type": "university",
"name": null,
"location": null,
"location_level": null
}
],
"semantic_query": "quantum computing",
"query_rewrite": "Count of universities participating in quantum computing projects",
"meta": {
"lang": "EN",
"intent": "Quantify",
"resolvability": "Partial",
"notes": "Aggregation (count) cannot be expressed in schema"
}
}
```
## Usage
### Loading the Dataset
```python
from datasets import load_dataset
dataset = load_dataset("SIRIS-Lab/impuls-query-parsing")
# Access splits
train_data = dataset["train"]
test_data = dataset["test"]
# Example
print(train_data[0]["meta"]["original_query"])
print(train_data[0]["semantic_query"])
```
### For Training with Transformers
```python
from datasets import load_dataset
dataset = load_dataset("SIRIS-Lab/impuls-query-parsing")
def format_for_training(example):
# Format as instruction-following
return {
"instruction": "Convert this query to structured JSON for R&D project search.",
"input": example["meta"]["original_query"],
"output": json.dumps(example, ensure_ascii=False, indent=2)
}
formatted = dataset.map(format_for_training)
```
## Data Collection
### Training Data
The training set was **synthetically generated** using:
- Controlled vocabularies (funding programmes, organization names, locations)
- Thematic keywords extracted from real R&D project titles and abstracts
- Domain-specific templates mirroring realistic user queries
- Balanced language distribution across Catalan, Spanish, and English
### Test Data
The test set contains **real queries from domain experts**:
- Collected from researchers and R&I policy analysts
- Elicited through structured questionnaires asking for typical information needs
- Manually annotated with gold-standard JSON structures
## Intended Use
This dataset is designed for:
- Training query parsing models for R&D project search systems
- Evaluating multilingual NLU capabilities for Catalan, Spanish, and English
- Benchmarking structured output generation from natural language
- Research on semantic parsing for specialized domains
## Limitations
- **Domain-specific**: Focused on R&D project search; may not generalize to other domains
- **Schema constraints**: Some query types (ranking, complex aggregations) cannot be fully represented
- **Synthetic training data**: Training examples are template-generated, which may limit diversity
- **Language balance**: Test set has more English queries than training distribution
## Citation
```bibtex
@misc{impuls-query-parsing-2024,
author = {SIRIS Academic},
title = {IMPULS Query Parsing Dataset: Multilingual Queries for R&D Semantic Search},
year = {2024},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/datasets/SIRIS-Lab/impuls-query-parsing}}
}
```
## Acknowledgments
- **[Barcelona Supercomputing Center (BSC)](https://www.bsc.es/)** - AINA project infrastructure
- **[Generalitat de Catalunya](https://web.gencat.cat/)** - Funding and RIS3-MCAT platform
- **[AINA Project](https://projecteaina.cat/)** - AINA Challenge 2024 framework
## License
Apache 2.0
## Links
- **Query Parser Model**: [SIRIS-Lab/impuls-salamandra-7b-query-parser](https://huggingface.co/SIRIS-Lab/impuls-salamandra-7b-query-parser)
- **Project Repository**: [github.com/sirisacademic/aina-impulse](https://github.com/sirisacademic/aina-impulse)
- **SIRIS Academic**: [sirisacademic.com](https://sirisacademic.com/)