|
|
--- |
|
|
license: apache-2.0 |
|
|
language: |
|
|
- ca |
|
|
- es |
|
|
- en |
|
|
task_categories: |
|
|
- text-generation |
|
|
tags: |
|
|
- query-parsing |
|
|
- structured-output |
|
|
- json-generation |
|
|
- multilingual |
|
|
- catalan |
|
|
- spanish |
|
|
- R&D |
|
|
- semantic-search |
|
|
- AINA |
|
|
- semantic-parsing |
|
|
size_categories: |
|
|
- n<1K |
|
|
--- |
|
|
|
|
|
# IMPULS Query Parsing Dataset |
|
|
|
|
|
A multilingual dataset for training and evaluating query parsing models that convert natural language queries into structured JSON for R&D project semantic search. |
|
|
|
|
|
## Dataset Description |
|
|
|
|
|
This dataset was created as part of the **IMPULS project** (AINA Challenge 2024), a collaboration between [SIRIS Academic](https://sirisacademic.com/) and [Generalitat de Catalunya](https://web.gencat.cat/) to build a multilingual semantic search system for R&D ecosystems. |
|
|
|
|
|
The dataset contains natural language queries in **Catalan, Spanish, and English** paired with their structured JSON representations, designed for training models to: |
|
|
- Extract semantic search terms from natural language |
|
|
- Identify structured filters (funding programme, year, location, organization type) |
|
|
- Detect query language and intent |
|
|
|
|
|
### Supported Tasks |
|
|
|
|
|
- **Query Parsing / Semantic Parsing**: Convert natural language to structured JSON |
|
|
- **Information Extraction**: Extract entities and filters from queries |
|
|
- **Multilingual NLU**: Understanding queries across CA/ES/EN |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
### Data Splits |
|
|
|
|
|
| Split | Examples | Description | |
|
|
|-------|----------|-------------| |
|
|
| `train` | 682 | Synthetic, template-generated queries | |
|
|
| `test` | 100 | Real queries from domain experts | |
|
|
|
|
|
### Schema |
|
|
|
|
|
Each example contains a structured JSON with the following fields: |
|
|
|
|
|
```json |
|
|
{ |
|
|
"doc_type": "projects", |
|
|
"filters": { |
|
|
"programme": "Horizon 2020 | FEDER | SIFECAT | null", |
|
|
"funding_level": "string | null", |
|
|
"year": ">=2020 | 2015-2020 | null", |
|
|
"location": "Catalunya | Spain | null", |
|
|
"location_level": "region | province | country | null" |
|
|
}, |
|
|
"organisations": [ |
|
|
{ |
|
|
"type": "university | research_center | hospital | company | null", |
|
|
"name": "UPC | CSIC | null", |
|
|
"location": "Barcelona | null", |
|
|
"location_level": "province | region | null" |
|
|
} |
|
|
], |
|
|
"semantic_query": "intel·ligència artificial salut", |
|
|
"query_rewrite": "Human-readable interpretation of the query", |
|
|
"meta": { |
|
|
"id": "TRAIN_001", |
|
|
"source": "synthetic | expert", |
|
|
"lang": "CA | ES | EN", |
|
|
"original_query": "The original natural language query", |
|
|
"intent": "Discover | Quantify", |
|
|
"style": "Concise | Verbose | Technical", |
|
|
"components": ["Content", "Programme", "Year", "Location"], |
|
|
"resolvability": "Direct | Adapted | Partial", |
|
|
"notes": "Optional notes about interpretation" |
|
|
} |
|
|
} |
|
|
``` |
|
|
|
|
|
### Field Descriptions |
|
|
|
|
|
| Field | Description | |
|
|
|-------|-------------| |
|
|
| `doc_type` | Document type to search (always "projects") | |
|
|
| `filters.programme` | Funding programme (H2020, Horizon Europe, FEDER, SIFECAT, etc.) | |
|
|
| `filters.year` | Year filter (single year, range, or comparison like ">=2020") | |
|
|
| `filters.location` | Geographic filter | |
|
|
| `filters.location_level` | Geographic granularity (country, region, province) | |
|
|
| `organisations` | List of organization filters with type, name, and location | |
|
|
| `semantic_query` | Core thematic content for vector search | |
|
|
| `query_rewrite` | Human-readable interpretation | |
|
|
| `meta.original_query` | The original natural language query | |
|
|
| `meta.lang` | Query language (CA/ES/EN) | |
|
|
| `meta.intent` | Query intent (Discover/Quantify) | |
|
|
| `meta.resolvability` | How well the query maps to the schema | |
|
|
|
|
|
## Dataset Statistics |
|
|
|
|
|
### Language Distribution |
|
|
|
|
|
| Language | Training | Test | |
|
|
|----------|----------|------| |
|
|
| Catalan (CA) | ~33% | ~33% | |
|
|
| Spanish (ES) | ~33% | ~21% | |
|
|
| English (EN) | ~33% | ~46% | |
|
|
|
|
|
### Intent Distribution |
|
|
|
|
|
| Intent | Count | Percentage | |
|
|
|--------|-------|------------| |
|
|
| Discover | 600 | 88.0% | |
|
|
| Quantify | 82 | 12.0% | |
|
|
|
|
|
### Resolvability Distribution |
|
|
|
|
|
| Type | Count | Percentage | Description | |
|
|
|------|-------|------------|-------------| |
|
|
| Direct | 529 | 77.6% | Fully mappable to schema | |
|
|
| Adapted | 15 | 2.2% | Requires interpretation | |
|
|
| Partial | 138 | 20.2% | Cannot fully express (ranking, aggregation) | |
|
|
|
|
|
### Component Distribution |
|
|
|
|
|
| Component | Frequency | |
|
|
|-----------|-----------| |
|
|
| Thematic content | 92.8% | |
|
|
| Organization type | 39.9% | |
|
|
| Organization location | 17.7% | |
|
|
| Programme (funding) | 17.6% | |
|
|
| Time expressions | 10.7% | |
|
|
| Project location | 10.4% | |
|
|
| Year (specific) | 7.8% | |
|
|
| Organization name | 7.3% | |
|
|
|
|
|
## Examples |
|
|
|
|
|
### Example 1: Catalan Query (Discover) |
|
|
|
|
|
**Original query:** `"Projectes on la UPC és coordinadora en l'àmbit de la ciberseguretat"` |
|
|
|
|
|
```json |
|
|
{ |
|
|
"doc_type": "projects", |
|
|
"filters": { |
|
|
"programme": null, |
|
|
"funding_level": null, |
|
|
"year": null, |
|
|
"location": null, |
|
|
"location_level": null |
|
|
}, |
|
|
"organisations": [ |
|
|
{ |
|
|
"type": "university", |
|
|
"name": "UPC", |
|
|
"location": null, |
|
|
"location_level": null |
|
|
} |
|
|
], |
|
|
"semantic_query": "ciberseguretat", |
|
|
"query_rewrite": "Llista de projectes de la UPC sobre ciberseguretat", |
|
|
"meta": { |
|
|
"id": "TRAIN_488", |
|
|
"source": "synthetic", |
|
|
"lang": "CA", |
|
|
"original_query": "Projectes on la UPC és coordinadora en l'àmbit de la ciberseguretat", |
|
|
"intent": "Discover", |
|
|
"style": "Concise", |
|
|
"components": ["Scope", "Organisation Name", "Content", "Role Qualifier"], |
|
|
"resolvability": "Partial", |
|
|
"notes": "No es pot filtrar pel rol de 'coordinadora'" |
|
|
} |
|
|
} |
|
|
``` |
|
|
|
|
|
### Example 2: Spanish Query with Filters |
|
|
|
|
|
**Original query:** `"proyectos de inteligencia artificial financiados por H2020 desde 2019"` |
|
|
|
|
|
```json |
|
|
{ |
|
|
"doc_type": "projects", |
|
|
"filters": { |
|
|
"programme": "Horizon 2020", |
|
|
"funding_level": null, |
|
|
"year": ">=2019", |
|
|
"location": null, |
|
|
"location_level": null |
|
|
}, |
|
|
"organisations": [], |
|
|
"semantic_query": "inteligencia artificial", |
|
|
"query_rewrite": "Proyectos sobre inteligencia artificial del programa H2020 desde 2019", |
|
|
"meta": { |
|
|
"lang": "ES", |
|
|
"intent": "Discover", |
|
|
"resolvability": "Direct" |
|
|
} |
|
|
} |
|
|
``` |
|
|
|
|
|
### Example 3: English Quantify Query |
|
|
|
|
|
**Original query:** `"how many universities participated in quantum computing projects?"` |
|
|
|
|
|
```json |
|
|
{ |
|
|
"doc_type": "projects", |
|
|
"filters": { |
|
|
"programme": null, |
|
|
"funding_level": null, |
|
|
"year": null, |
|
|
"location": null, |
|
|
"location_level": null |
|
|
}, |
|
|
"organisations": [ |
|
|
{ |
|
|
"type": "university", |
|
|
"name": null, |
|
|
"location": null, |
|
|
"location_level": null |
|
|
} |
|
|
], |
|
|
"semantic_query": "quantum computing", |
|
|
"query_rewrite": "Count of universities participating in quantum computing projects", |
|
|
"meta": { |
|
|
"lang": "EN", |
|
|
"intent": "Quantify", |
|
|
"resolvability": "Partial", |
|
|
"notes": "Aggregation (count) cannot be expressed in schema" |
|
|
} |
|
|
} |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Loading the Dataset |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
dataset = load_dataset("SIRIS-Lab/impuls-query-parsing") |
|
|
|
|
|
# Access splits |
|
|
train_data = dataset["train"] |
|
|
test_data = dataset["test"] |
|
|
|
|
|
# Example |
|
|
print(train_data[0]["meta"]["original_query"]) |
|
|
print(train_data[0]["semantic_query"]) |
|
|
``` |
|
|
|
|
|
### For Training with Transformers |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
dataset = load_dataset("SIRIS-Lab/impuls-query-parsing") |
|
|
|
|
|
def format_for_training(example): |
|
|
# Format as instruction-following |
|
|
return { |
|
|
"instruction": "Convert this query to structured JSON for R&D project search.", |
|
|
"input": example["meta"]["original_query"], |
|
|
"output": json.dumps(example, ensure_ascii=False, indent=2) |
|
|
} |
|
|
|
|
|
formatted = dataset.map(format_for_training) |
|
|
``` |
|
|
|
|
|
## Data Collection |
|
|
|
|
|
### Training Data |
|
|
The training set was **synthetically generated** using: |
|
|
- Controlled vocabularies (funding programmes, organization names, locations) |
|
|
- Thematic keywords extracted from real R&D project titles and abstracts |
|
|
- Domain-specific templates mirroring realistic user queries |
|
|
- Balanced language distribution across Catalan, Spanish, and English |
|
|
|
|
|
### Test Data |
|
|
The test set contains **real queries from domain experts**: |
|
|
- Collected from researchers and R&I policy analysts |
|
|
- Elicited through structured questionnaires asking for typical information needs |
|
|
- Manually annotated with gold-standard JSON structures |
|
|
|
|
|
## Intended Use |
|
|
|
|
|
This dataset is designed for: |
|
|
- Training query parsing models for R&D project search systems |
|
|
- Evaluating multilingual NLU capabilities for Catalan, Spanish, and English |
|
|
- Benchmarking structured output generation from natural language |
|
|
- Research on semantic parsing for specialized domains |
|
|
|
|
|
## Limitations |
|
|
|
|
|
- **Domain-specific**: Focused on R&D project search; may not generalize to other domains |
|
|
- **Schema constraints**: Some query types (ranking, complex aggregations) cannot be fully represented |
|
|
- **Synthetic training data**: Training examples are template-generated, which may limit diversity |
|
|
- **Language balance**: Test set has more English queries than training distribution |
|
|
|
|
|
## Citation |
|
|
|
|
|
```bibtex |
|
|
@misc{impuls-query-parsing-2024, |
|
|
author = {SIRIS Academic}, |
|
|
title = {IMPULS Query Parsing Dataset: Multilingual Queries for R&D Semantic Search}, |
|
|
year = {2024}, |
|
|
publisher = {Hugging Face}, |
|
|
howpublished = {\url{https://huggingface.co/datasets/SIRIS-Lab/impuls-query-parsing}} |
|
|
} |
|
|
``` |
|
|
|
|
|
## Acknowledgments |
|
|
|
|
|
- **[Barcelona Supercomputing Center (BSC)](https://www.bsc.es/)** - AINA project infrastructure |
|
|
- **[Generalitat de Catalunya](https://web.gencat.cat/)** - Funding and RIS3-MCAT platform |
|
|
- **[AINA Project](https://projecteaina.cat/)** - AINA Challenge 2024 framework |
|
|
|
|
|
## License |
|
|
|
|
|
Apache 2.0 |
|
|
|
|
|
## Links |
|
|
|
|
|
- **Query Parser Model**: [SIRIS-Lab/impuls-salamandra-7b-query-parser](https://huggingface.co/SIRIS-Lab/impuls-salamandra-7b-query-parser) |
|
|
- **Project Repository**: [github.com/sirisacademic/aina-impulse](https://github.com/sirisacademic/aina-impulse) |
|
|
- **SIRIS Academic**: [sirisacademic.com](https://sirisacademic.com/) |
|
|
|