The dataset is currently empty. Upload or create new data files. Then, you will be able to explore them in the Dataset Viewer.

LOFT RAG Datasets

This is the main index for all LOFT (Long-context Open Foundation Tasks) RAG (Retrieval-Augmented Generation) datasets.

Overview

All datasets are part of the LOFT benchmark and have been converted to HuggingFace format with 100% prompt fidelity to the original LOFT implementation.

Available Datasets

HotpotQA

MuSiQue

Natural Questions

Qampari

Quest

Usage

from datasets import load_dataset

# Load any dataset
dataset = load_dataset("loft-rag-nq-32k")

# Access splits
dev_data = dataset["dev"]
test_data = dataset["test"]

# Convert to pandas
df_dev = dev_data.to_pandas()
df_test = test_data.to_pandas()

Dataset Structure

All datasets contain:

  • context: Full prompt context with corpus documents and few-shot examples
  • question: Query separator + query format + query text
  • answer_prefix: Prefix for answer generation
  • answers: Ground truth answers (list)
  • task: Task identifier
  • max_new_tokens: Maximum tokens for generation (256)

Citation

@article{loft2024,
  title={LOFT: Long-context Open Foundation Tasks},
  author={Google DeepMind},
  year={2024},
  url={https://github.com/google-deepmind/loft}
}

License

Apache 2.0

Downloads last month
18