The dataset is currently empty. Upload or create new data files. Then, you will be able to explore them in the Dataset Viewer.
LOFT RAG Datasets
This is the main index for all LOFT (Long-context Open Foundation Tasks) RAG (Retrieval-Augmented Generation) datasets.
Overview
All datasets are part of the LOFT benchmark and have been converted to HuggingFace format with 100% prompt fidelity to the original LOFT implementation.
Available Datasets
HotpotQA
- 128k:
loft-rag-hotpotqa-128k - 1m:
loft-rag-hotpotqa-1m - 32k:
loft-rag-hotpotqa-32k
MuSiQue
- 128k:
loft-rag-musique-128k - 1m:
loft-rag-musique-1m - 32k:
loft-rag-musique-32k
Natural Questions
- 128k:
loft-rag-nq-128k - 1m:
loft-rag-nq-1m - 32k:
loft-rag-nq-32k
Qampari
- 128k:
loft-rag-qampari-128k - 1m:
loft-rag-qampari-1m - 32k:
loft-rag-qampari-32k
Quest
- 128k:
loft-rag-quest-128k - 1m:
loft-rag-quest-1m - 32k:
loft-rag-quest-32k
Usage
from datasets import load_dataset
# Load any dataset
dataset = load_dataset("loft-rag-nq-32k")
# Access splits
dev_data = dataset["dev"]
test_data = dataset["test"]
# Convert to pandas
df_dev = dev_data.to_pandas()
df_test = test_data.to_pandas()
Dataset Structure
All datasets contain:
context: Full prompt context with corpus documents and few-shot examplesquestion: Query separator + query format + query textanswer_prefix: Prefix for answer generationanswers: Ground truth answers (list)task: Task identifiermax_new_tokens: Maximum tokens for generation (256)
Citation
@article{loft2024,
title={LOFT: Long-context Open Foundation Tasks},
author={Google DeepMind},
year={2024},
url={https://github.com/google-deepmind/loft}
}
License
Apache 2.0
- Downloads last month
- 18