name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
Nat.recDiagAux_succ_succ
Batteries.Data.Nat.Lemmas
βˆ€ {motive : β„• β†’ β„• β†’ Sort u_1} (zero_left : (n : β„•) β†’ motive 0 n) (zero_right : (m : β„•) β†’ motive m 0) (succ_succ : (m n : β„•) β†’ motive m n β†’ motive (m + 1) (n + 1)) (m n : β„•), Nat.recDiagAux zero_left zero_right succ_succ (m + 1) (n + 1) = succ_succ m n (Nat.recDiagAux zero_left zero_right succ_succ m n)
_private.Mathlib.RingTheory.LittleWedderburn.0.LittleWedderburn.InductionHyp.field._proof_11
Mathlib.RingTheory.LittleWedderburn
βˆ€ {D : Type u_1} [inst : DivisionRing D] {R : Subring D} [inst_1 : Fintype D] [inst_2 : DecidableEq D] [inst_3 : DecidablePred fun x => x ∈ R] (q : β„šβ‰₯0) (a : β†₯R), DivisionRing.nnqsmul q a = ↑q * a
_private.Mathlib.CategoryTheory.Limits.Opposites.0.CategoryTheory.Limits.limitOpIsoOpColimit_hom_comp_ΞΉ._simp_1_1
Mathlib.CategoryTheory.Limits.Opposites
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {X Y Z : C} (Ξ± : X β‰… Y) {f : X ⟢ Z} {g : Y ⟢ Z}, (CategoryTheory.CategoryStruct.comp Ξ±.hom g = f) = (g = CategoryTheory.CategoryStruct.comp Ξ±.inv f)
Lean.Elab.Command.Structure.checkValidFieldModifier
Lean.Elab.Structure
Lean.Elab.Modifiers β†’ Lean.Elab.TermElabM Unit
LipschitzWith.compLp
Mathlib.MeasureTheory.Function.LpSpace.Basic
{Ξ± : Type u_1} β†’ {E : Type u_4} β†’ {F : Type u_5} β†’ {m : MeasurableSpace Ξ±} β†’ {p : ENNReal} β†’ {ΞΌ : MeasureTheory.Measure Ξ±} β†’ [inst : NormedAddCommGroup E] β†’ [inst_1 : NormedAddCommGroup F] β†’ {g : E β†’ F} β†’ {c : NNReal} β†’ LipschitzWith c g β†’ g 0 = 0 β†’ β†₯(MeasureTheory.Lp E p ΞΌ) β†’ β†₯(MeasureTheory.Lp F p ΞΌ)
FormalMultilinearSeries.leftInv._proof_30
Mathlib.Analysis.Analytic.Inverse
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E], ContinuousConstSMul π•œ E
_private.Init.Data.Array.Lemmas.0.Array.range.eq_1
Init.Data.Array.Lemmas
βˆ€ (n : β„•), Array.range n = Array.ofFn fun i => ↑i
List.merge_of_le
Init.Data.List.Sort.Lemmas
βˆ€ {Ξ± : Type u_1} {le : Ξ± β†’ Ξ± β†’ Bool} {xs ys : List Ξ±}, (βˆ€ (a b : Ξ±), a ∈ xs β†’ b ∈ ys β†’ le a b = true) β†’ xs.merge ys le = xs ++ ys
Std.TreeMap.Raw.Equiv.getEntryLT?_eq
Std.Data.TreeMap.Raw.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t₁ tβ‚‚ : Std.TreeMap.Raw Ξ± Ξ² cmp} [Std.TransCmp cmp] {k : Ξ±}, t₁.WF β†’ tβ‚‚.WF β†’ t₁.Equiv tβ‚‚ β†’ t₁.getEntryLT? k = tβ‚‚.getEntryLT? k
CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapβ‚‚_comp
Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
βˆ€ {B : Type u₁} [inst : CategoryTheory.Bicategory B] {C : Type uβ‚‚} [inst_1 : CategoryTheory.Bicategory C] (self : CategoryTheory.StrictlyUnitaryLaxFunctorCore B C) {a b : B} {f g h : a ⟢ b} (Ξ· : f ⟢ g) (ΞΈ : g ⟢ h), self.mapβ‚‚ (CategoryTheory.CategoryStruct.comp Ξ· ΞΈ) = CategoryTheory.CategoryStruct.comp (self.mapβ‚‚ Ξ·) (self.mapβ‚‚ ΞΈ)
Lean.Parser.Tactic.quot
Lean.Parser.Term
Lean.Parser.Parser
ContinuousMultilinearMap.currySumEquiv._proof_10
Mathlib.Analysis.Normed.Module.Multilinear.Curry
βˆ€ (π•œ : Type u_1) (ΞΉ : Type u_2) (ΞΉ' : Type u_3) (G : Type u_4) (G' : Type u_5) [inst : Fintype ΞΉ] [inst_1 : Fintype ΞΉ'] [inst_2 : NontriviallyNormedField π•œ] [inst_3 : NormedAddCommGroup G] [inst_4 : NormedSpace π•œ G] [inst_5 : NormedAddCommGroup G'] [inst_6 : NormedSpace π•œ G'] (f : ContinuousMultilinearMap π•œ (fun x => G) G'), β€–f.currySum.mkContinuousMultilinear β€–fβ€– β‹―β€– ≀ β€–fβ€–
Std.TreeSet.Raw.toList_roc
Std.Data.TreeSet.Raw.Slice
βˆ€ {Ξ± : Type u} (cmp : autoParam (Ξ± β†’ Ξ± β†’ Ordering) _auto✝) [Std.TransCmp cmp] {t : Std.TreeSet.Raw Ξ± cmp}, t.WF β†’ βˆ€ {lowerBound upperBound : Ξ±}, Std.Slice.toList (Std.Roc.Sliceable.mkSlice t lowerBound<...=upperBound) = List.filter (fun e => decide ((cmp e lowerBound).isGT = true ∧ (cmp e upperBound).isLE = true)) t.toList
contMDiffOn_zero_iff
Mathlib.Geometry.Manifold.ContMDiff.Defs
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {H : Type u_3} [inst_3 : TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [inst_4 : TopologicalSpace M] [inst_5 : ChartedSpace H M] {E' : Type u_5} [inst_6 : NormedAddCommGroup E'] [inst_7 : NormedSpace π•œ E'] {H' : Type u_6} [inst_8 : TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M' : Type u_7} [inst_9 : TopologicalSpace M'] [inst_10 : ChartedSpace H' M'] {f : M β†’ M'} {s : Set M}, ContMDiffOn I I' 0 f s ↔ ContinuousOn f s
Fintype
Mathlib.Data.Fintype.Defs
Type u_4 β†’ Type u_4
Subalgebra.val._proof_5
Mathlib.Algebra.Algebra.Subalgebra.Basic
βˆ€ {R : Type u_2} {A : Type u_1} [inst : CommSemiring R] [inst_1 : Semiring A] [inst_2 : Algebra R A] (S : Subalgebra R A) (x : R), ↑((algebraMap R β†₯S) x) = ↑((algebraMap R β†₯S) x)
_private.Lean.PrettyPrinter.Delaborator.TopDownAnalyze.0.Lean.PrettyPrinter.Delaborator.isType2Type._sparseCasesOn_2
Lean.PrettyPrinter.Delaborator.TopDownAnalyze
{motive : Lean.Expr β†’ Sort u} β†’ (t : Lean.Expr) β†’ ((u : Lean.Level) β†’ motive (Lean.Expr.sort u)) β†’ (t.ctorIdx β‰  3 β†’ motive t) β†’ motive t
Rat.instNormedField
Mathlib.Analysis.Normed.Field.Lemmas
NormedField β„š
sqrt_one_add_norm_sq_le
Mathlib.Analysis.SpecialFunctions.JapaneseBracket
βˆ€ {E : Type u_1} [inst : NormedAddCommGroup E] (x : E), √(1 + β€–xβ€– ^ 2) ≀ 1 + β€–xβ€–
instAddUInt32
Init.Data.UInt.Basic
Add UInt32
_private.Mathlib.AlgebraicGeometry.Morphisms.QuasiCompact.0.AlgebraicGeometry.instHasAffinePropertyQuasiCompactCompactSpaceCarrierCarrierCommRingCat._simp_2
Mathlib.AlgebraicGeometry.Morphisms.QuasiCompact
βˆ€ {X : Type u} [inst : TopologicalSpace X] {s : Set X}, IsCompact s = CompactSpace ↑s
div_right_injective
Mathlib.Algebra.Group.Basic
βˆ€ {G : Type u_3} [inst : Group G] {b : G}, Function.Injective fun a => b / a
_private.Init.Data.Nat.Bitwise.Lemmas.0.Nat.testBit_two_pow._proof_1_3
Init.Data.Nat.Bitwise.Lemmas
βˆ€ {n m : β„•}, m < n β†’ Β¬m ≀ n β†’ False
Prod.mk_le_mk._simp_1
Mathlib.Order.Basic
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : LE Ξ±] [inst_1 : LE Ξ²] {a₁ aβ‚‚ : Ξ±} {b₁ bβ‚‚ : Ξ²}, ((a₁, b₁) ≀ (aβ‚‚, bβ‚‚)) = (a₁ ≀ aβ‚‚ ∧ b₁ ≀ bβ‚‚)
_private.Init.Data.UInt.Lemmas.0.UInt32.ofNat_mul._simp_1_1
Init.Data.UInt.Lemmas
βˆ€ (a : β„•) (b : UInt32), (UInt32.ofNat a = b) = (a % 2 ^ 32 = b.toNat)
Lean.FileMap.lineStart
Lean.Data.Position
Lean.FileMap β†’ β„• β†’ String.Pos.Raw
SimpleGraph.isNIndepSet_iff
Mathlib.Combinatorics.SimpleGraph.Clique
βˆ€ {Ξ± : Type u_1} (G : SimpleGraph Ξ±) (n : β„•) (s : Finset Ξ±), G.IsNIndepSet n s ↔ G.IsIndepSet ↑s ∧ s.card = n
_private.Mathlib.Order.Interval.Finset.Fin.0.Fin.finsetImage_natAdd_Icc._simp_1_1
Mathlib.Order.Interval.Finset.Fin
βˆ€ {Ξ± : Type u_1} {s₁ sβ‚‚ : Finset Ξ±}, (s₁ = sβ‚‚) = (↑s₁ = ↑sβ‚‚)
CategoryTheory.Functor.LaxMonoidal.ΞΌ_whiskerRight_comp_ΞΌ_assoc
Mathlib.CategoryTheory.Monoidal.Functor
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.MonoidalCategory C] {D : Type uβ‚‚} [inst_2 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] [inst_3 : CategoryTheory.MonoidalCategory D] (F : CategoryTheory.Functor C D) [inst_4 : F.LaxMonoidal] (X Y Z : C) {Z_1 : D} (h : F.obj (CategoryTheory.MonoidalCategoryStruct.tensorObj (CategoryTheory.MonoidalCategoryStruct.tensorObj X Y) Z) ⟢ Z_1), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight (CategoryTheory.Functor.LaxMonoidal.ΞΌ F X Y) (F.obj Z)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.LaxMonoidal.ΞΌ F (CategoryTheory.MonoidalCategoryStruct.tensorObj X Y) Z) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator (F.obj X) (F.obj Y) (F.obj Z)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft (F.obj X) (CategoryTheory.Functor.LaxMonoidal.ΞΌ F Y Z)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.LaxMonoidal.ΞΌ F X (CategoryTheory.MonoidalCategoryStruct.tensorObj Y Z)) (CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.MonoidalCategoryStruct.associator X Y Z).inv) h)))
Nat.gcd_sub_right_right_of_dvd
Init.Data.Nat.Gcd
βˆ€ {m k : β„•} (n : β„•), k ≀ m β†’ n ∣ k β†’ n.gcd (m - k) = n.gcd m
Trivialization.pullback._proof_1
Mathlib.Topology.FiberBundle.Constructions
βˆ€ {B : Type u_4} {F : Type u_2} {E : B β†’ Type u_3} {B' : Type u_1} [inst : TopologicalSpace (Bundle.TotalSpace F E)] [inst_1 : TopologicalSpace F] [inst_2 : TopologicalSpace B] {K : Type u_5} [inst_3 : FunLike K B' B] (e : Trivialization F Bundle.TotalSpace.proj) (f : K), βˆ€ x ∈ Bundle.Pullback.lift ⇑f ⁻¹' e.source, (x.proj, (↑e (Bundle.Pullback.lift (⇑f) x)).2) ∈ (⇑f ⁻¹' e.baseSet) Γ—Λ’ Set.univ
CategoryTheory.CategoryOfElements.fromStructuredArrow._proof_5
Mathlib.CategoryTheory.Elements
βˆ€ {C : Type u_3} [inst : CategoryTheory.Category.{u_1, u_3} C] (F : CategoryTheory.Functor C (Type u_2)) {X Y Z : CategoryTheory.StructuredArrow PUnit.{u_2 + 1} F} (f : X ⟢ Y) (g : Y ⟢ Z), ⟨(CategoryTheory.CategoryStruct.comp f g).right, β‹―βŸ© = CategoryTheory.CategoryStruct.comp ⟨f.right, β‹―βŸ© ⟨g.right, β‹―βŸ©
FundamentalGroupoid.instIsEmpty
Mathlib.AlgebraicTopology.FundamentalGroupoid.Basic
βˆ€ (X : Type u_3) [IsEmpty X], IsEmpty (FundamentalGroupoid X)
signedDist_vadd_right_swap
Mathlib.Geometry.Euclidean.SignedDist
βˆ€ {V : Type u_1} {P : Type u_2} [inst : NormedAddCommGroup V] [inst_1 : InnerProductSpace ℝ V] [inst_2 : MetricSpace P] [inst_3 : NormedAddTorsor V P] (v w : V) (p q : P), ((signedDist v) p) (w +α΅₯ q) = ((signedDist v) (-w +α΅₯ p)) q
hasFDerivAt_inv
Mathlib.Analysis.Calculus.Deriv.Inv
βˆ€ {π•œ : Type u} [inst : NontriviallyNormedField π•œ] {x : π•œ}, x β‰  0 β†’ HasFDerivAt (fun x => x⁻¹) (ContinuousLinearMap.smulRight 1 (-(x ^ 2)⁻¹)) x
DenselyOrdered.rec
Mathlib.Order.Basic
{Ξ± : Type u_5} β†’ [inst : LT Ξ±] β†’ {motive : DenselyOrdered Ξ± β†’ Sort u} β†’ ((dense : βˆ€ (a₁ aβ‚‚ : Ξ±), a₁ < aβ‚‚ β†’ βˆƒ a, a₁ < a ∧ a < aβ‚‚) β†’ motive β‹―) β†’ (t : DenselyOrdered Ξ±) β†’ motive t
Pi.orderedSMul
Mathlib.Algebra.Order.Module.OrderedSMul
βˆ€ {ΞΉ : Type u_1} {π•œ : Type u_2} [inst : Semifield π•œ] [inst_1 : PartialOrder π•œ] [IsStrictOrderedRing π•œ] [PosMulReflectLT π•œ] {M : ΞΉ β†’ Type u_6} [inst_4 : (i : ΞΉ) β†’ AddCommMonoid (M i)] [inst_5 : (i : ΞΉ) β†’ PartialOrder (M i)] [inst_6 : (i : ΞΉ) β†’ MulActionWithZero π•œ (M i)] [βˆ€ (i : ΞΉ), OrderedSMul π•œ (M i)], OrderedSMul π•œ ((i : ΞΉ) β†’ M i)
_private.Mathlib.Lean.Expr.Basic.0.Lean.Name.fromComponents.go._unsafe_rec
Mathlib.Lean.Expr.Basic
Lean.Name β†’ List Lean.Name β†’ Lean.Name
Turing.ToPartrec.Cfg.ctorIdx
Mathlib.Computability.TMConfig
Turing.ToPartrec.Cfg β†’ β„•
Nat.shiftLeft'._unsafe_rec
Mathlib.Data.Nat.Bits
Bool β†’ β„• β†’ β„• β†’ β„•
_private.Init.Data.SInt.Lemmas.0.Int64.lt_iff_le_and_ne._simp_1_2
Init.Data.SInt.Lemmas
βˆ€ {x y : Int64}, (x ≀ y) = (x.toInt ≀ y.toInt)
Mathlib.Tactic.BicategoryLike.AtomIso.mk.sizeOf_spec
Mathlib.Tactic.CategoryTheory.Coherence.Datatypes
βˆ€ (e : Lean.Expr) (src tgt : Mathlib.Tactic.BicategoryLike.Mor₁), sizeOf { e := e, src := src, tgt := tgt } = 1 + sizeOf e + sizeOf src + sizeOf tgt
CategoryTheory.Bicategory.RightLift.mk
Mathlib.CategoryTheory.Bicategory.Extension
{B : Type u} β†’ [inst : CategoryTheory.Bicategory B] β†’ {a b c : B} β†’ {f : b ⟢ a} β†’ {g : c ⟢ a} β†’ (h : c ⟢ b) β†’ (CategoryTheory.CategoryStruct.comp h f ⟢ g) β†’ CategoryTheory.Bicategory.RightLift f g
Submodule.mem_adjoint_iff
Mathlib.Analysis.InnerProductSpace.LinearPMap
βˆ€ {π•œ : Type u_1} {E : Type u_2} {F : Type u_3} [inst : RCLike π•œ] [inst_1 : NormedAddCommGroup E] [inst_2 : InnerProductSpace π•œ E] [inst_3 : NormedAddCommGroup F] [inst_4 : InnerProductSpace π•œ F] (g : Submodule π•œ (E Γ— F)) (x : F Γ— E), x ∈ g.adjoint ↔ βˆ€ (a : E) (b : F), (a, b) ∈ g β†’ inner π•œ b x.1 - inner π•œ a x.2 = 0
CategoryTheory.Functor.pointwiseLeftKanExtensionCompIsoOfPreserves_fac_app
Mathlib.CategoryTheory.Functor.KanExtension.Preserves
βˆ€ {A : Type u_1} {B : Type u_2} {C : Type u_3} {D : Type u_4} [inst : CategoryTheory.Category.{u_6, u_1} A] [inst_1 : CategoryTheory.Category.{u_7, u_2} B] [inst_2 : CategoryTheory.Category.{u_8, u_3} C] [inst_3 : CategoryTheory.Category.{u_5, u_4} D] (G : CategoryTheory.Functor B D) (F : CategoryTheory.Functor A B) (L : CategoryTheory.Functor A C) [inst_4 : G.PreservesPointwiseLeftKanExtension F L] [inst_5 : L.HasPointwiseLeftKanExtension F] (a : A), CategoryTheory.CategoryStruct.comp ((L.pointwiseLeftKanExtensionUnit (F.comp G)).app a) ((G.pointwiseLeftKanExtensionCompIsoOfPreserves F L).inv.app (L.obj a)) = G.map ((L.pointwiseLeftKanExtensionUnit F).app a)
_private.Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Scheme.0.AlgebraicGeometry.termProj
Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Scheme
Lean.ParserDescr
_private.Mathlib.Data.Fin.SuccPred.0.Fin.succAbove_succAbove_succAbove_predAbove._proof_1_12
Mathlib.Data.Fin.SuccPred
βˆ€ {n : β„•} (i : Fin (n + 2)) (j : Fin (n + 1)) (k : Fin n), ↑j < ↑i β†’ ¬↑k < ↑i - 1 β†’ ↑k + 1 < ↑j β†’ ¬↑k < ↑j β†’ ¬↑k + 1 < ↑i β†’ ↑k + 1 = ↑k + 1 + 1
_private.Mathlib.AlgebraicGeometry.EllipticCurve.Affine.Basic.0.tacticEval_simp
Mathlib.AlgebraicGeometry.EllipticCurve.Affine.Basic
Lean.ParserDescr
Stream'.WSeq.ofList_cons
Mathlib.Data.WSeq.Basic
βˆ€ {Ξ± : Type u} (a : Ξ±) (l : List Ξ±), ↑(a :: l) = Stream'.WSeq.cons a ↑l
_private.Mathlib.NumberTheory.Divisors.0.Int.mul_mem_zero_one_two_three_four_iff._simp_1_1
Mathlib.NumberTheory.Divisors
βˆ€ {x y z : β„€}, z β‰  0 β†’ (x * y = z) = ((x, y) ∈ z.divisorsAntidiag)
CompareReals.compareEquiv
Mathlib.Topology.UniformSpace.CompareReals
CompareReals.Bourbakiℝ ≃ᡀ ℝ
Lean.Options.getInPattern
Lean.Data.Options
Lean.Options β†’ Bool
StandardEtalePair.instEtaleRing
Mathlib.RingTheory.Etale.StandardEtale
βˆ€ {R : Type u_1} [inst : CommRing R] (P : StandardEtalePair R), Algebra.Etale R P.Ring
MulSemiringActionHom.map_mul'
Mathlib.GroupTheory.GroupAction.Hom
βˆ€ {M : Type u_1} [inst : Monoid M] {N : Type u_2} [inst_1 : Monoid N] {Ο† : M β†’* N} {R : Type u_10} [inst_2 : Semiring R] [inst_3 : MulSemiringAction M R] {S : Type u_12} [inst_4 : Semiring S] [inst_5 : MulSemiringAction N S] (self : R β†’β‚‘+*[Ο†] S) (x y : R), self.toFun (x * y) = self.toFun x * self.toFun y
[email protected]._hygCtx._hyg.23
Lean.Elab.DocString.Builtin
TypeName Lean.Doc.Data.Option
EstimatorData.improve
Mathlib.Deprecated.Estimator
{Ξ± : Type u_1} β†’ (a : Thunk Ξ±) β†’ {Ξ΅ : Type u_3} β†’ [self : EstimatorData a Ξ΅] β†’ Ξ΅ β†’ Option Ξ΅
_private.Lean.Server.ProtocolOverview.0.Lean.Server.Overview.ProtocolExtensionKind.ctorIdx
Lean.Server.ProtocolOverview
Lean.Server.Overview.ProtocolExtensionKind✝ β†’ β„•
_private.Mathlib.Algebra.MvPolynomial.SchwartzZippel.0.MvPolynomial.schwartz_zippel_sup_sum._simp_1_5
Mathlib.Algebra.MvPolynomial.SchwartzZippel
βˆ€ (p : Prop), (p ∨ Β¬p) = True
NonUnitalStarAlgHom.mk
Mathlib.Algebra.Star.StarAlgHom
{R : Type u_1} β†’ {A : Type u_2} β†’ {B : Type u_3} β†’ [inst : Monoid R] β†’ [inst_1 : NonUnitalNonAssocSemiring A] β†’ [inst_2 : DistribMulAction R A] β†’ [inst_3 : Star A] β†’ [inst_4 : NonUnitalNonAssocSemiring B] β†’ [inst_5 : DistribMulAction R B] β†’ [inst_6 : Star B] β†’ (toNonUnitalAlgHom : A →ₙₐ[R] B) β†’ (βˆ€ (a : A), toNonUnitalAlgHom.toFun (star a) = star (toNonUnitalAlgHom.toFun a)) β†’ A →⋆ₙₐ[R] B
ContinuousOrderHom._sizeOf_inst
Mathlib.Topology.Order.Hom.Basic
(Ξ± : Type u_6) β†’ (Ξ² : Type u_7) β†’ {inst : Preorder Ξ±} β†’ {inst_1 : Preorder Ξ²} β†’ {inst_2 : TopologicalSpace Ξ±} β†’ {inst_3 : TopologicalSpace Ξ²} β†’ [SizeOf Ξ±] β†’ [SizeOf Ξ²] β†’ SizeOf (Ξ± β†’Co Ξ²)
Std.DTreeMap.isEmpty_toList
Std.Data.DTreeMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.DTreeMap Ξ± Ξ² cmp}, t.toList.isEmpty = t.isEmpty
_auto._@.Mathlib.AlgebraicTopology.SimplicialSet.HomotopyCat.2043895517._hygCtx._hyg.52
Mathlib.AlgebraicTopology.SimplicialSet.HomotopyCat
Lean.Syntax
_private.Mathlib.Data.Int.Init.0.Int.le_induction_down._proof_1_3
Mathlib.Data.Int.Init
βˆ€ {m : β„€} {motive : (n : β„€) β†’ n ≀ m β†’ Prop}, (βˆ€ (n : β„€) (hmn : n ≀ m), motive n hmn β†’ motive (n - 1) β‹―) β†’ βˆ€ (n k : β„€), m ≀ k β†’ (βˆ€ (hmn : k ≀ m), motive k hmn) β†’ βˆ€ (hle' : k + 1 ≀ m), motive (k + 1) hle'
Real.geom_mean_le_arith_mean3_weighted
Mathlib.Analysis.MeanInequalities
βˆ€ {w₁ wβ‚‚ w₃ p₁ pβ‚‚ p₃ : ℝ}, 0 ≀ w₁ β†’ 0 ≀ wβ‚‚ β†’ 0 ≀ w₃ β†’ 0 ≀ p₁ β†’ 0 ≀ pβ‚‚ β†’ 0 ≀ p₃ β†’ w₁ + wβ‚‚ + w₃ = 1 β†’ p₁ ^ w₁ * pβ‚‚ ^ wβ‚‚ * p₃ ^ w₃ ≀ w₁ * p₁ + wβ‚‚ * pβ‚‚ + w₃ * p₃
AddMonCat.HasLimits.limitConeIsLimit._proof_5
Mathlib.Algebra.Category.MonCat.Limits
βˆ€ {J : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} J] (F : CategoryTheory.Functor J AddMonCat) (s : CategoryTheory.Limits.Cone F) (x y : ↑s.1) {j j' : J} (f : j ⟢ j'), CategoryTheory.CategoryStruct.comp (((CategoryTheory.forget AddMonCat).mapCone s).Ο€.app j) ((F.comp (CategoryTheory.forget AddMonCat)).map f) (x + y) = ((CategoryTheory.forget AddMonCat).mapCone s).Ο€.app j' (x + y)
AddMonoidHom.mulOp._proof_4
Mathlib.Algebra.Group.Equiv.Opposite
βˆ€ {M : Type u_2} {N : Type u_1} [inst : AddZeroClass M] [inst_1 : AddZeroClass N] (f : Mᡐᡒᡖ β†’+ Nᡐᡒᡖ) (x y : M), MulOpposite.unop ((⇑f ∘ MulOpposite.op) (x + y)) = MulOpposite.unop { unop' := (MulOpposite.unop ∘ ⇑f ∘ MulOpposite.op) x + (MulOpposite.unop ∘ ⇑f ∘ MulOpposite.op) y }
CategoryTheory.comp_eqToHom_iff
Mathlib.CategoryTheory.EqToHom
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {X Y Y' : C} (p : Y = Y') (f : X ⟢ Y) (g : X ⟢ Y'), CategoryTheory.CategoryStruct.comp f (CategoryTheory.eqToHom p) = g ↔ f = CategoryTheory.CategoryStruct.comp g (CategoryTheory.eqToHom β‹―)
_private.Init.Data.Format.Basic.0.Std.Format.SpaceResult.foundLine
Init.Data.Format.Basic
Std.Format.SpaceResult✝ β†’ Bool
Ordinal.isNormal_veblen_zero
Mathlib.SetTheory.Ordinal.Veblen
Ordinal.IsNormal fun x => Ordinal.veblen x 0
instContinuousSMulTangentSpace
Mathlib.Geometry.Manifold.IsManifold.Basic
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {H : Type u_3} [inst_3 : TopologicalSpace H] (I : ModelWithCorners π•œ E H) {M : Type u_4} [inst_4 : TopologicalSpace M] [inst_5 : ChartedSpace H M] (_x : M), ContinuousSMul π•œ (TangentSpace I _x)
Cardinal.lift_sSup
Mathlib.SetTheory.Cardinal.Basic
βˆ€ {s : Set Cardinal.{u_1}}, BddAbove s β†’ Cardinal.lift.{u, u_1} (sSup s) = sSup (Cardinal.lift.{u, u_1} '' s)
_private.Mathlib.Order.ModularLattice.0.strictMono_inf_prod_sup.match_1_1
Mathlib.Order.ModularLattice
βˆ€ {Ξ± : Type u_1} [inst : Lattice Ξ±] {z : Ξ±} (_x _y : Ξ±) (motive : (fun x => (x βŠ“ z, x βŠ” z)) _y ≀ (fun x => (x βŠ“ z, x βŠ” z)) _x β†’ Prop) (x : (fun x => (x βŠ“ z, x βŠ” z)) _y ≀ (fun x => (x βŠ“ z, x βŠ” z)) _x), (βˆ€ (inf_le : ((fun x => (x βŠ“ z, x βŠ” z)) _y).1 ≀ ((fun x => (x βŠ“ z, x βŠ” z)) _x).1) (sup_le : ((fun x => (x βŠ“ z, x βŠ” z)) _y).2 ≀ ((fun x => (x βŠ“ z, x βŠ” z)) _x).2), motive β‹―) β†’ motive x
Lean.Parser.Term.letOpts.formatter
Lean.Parser.Term
Lean.PrettyPrinter.Formatter
_private.Mathlib.RingTheory.AdicCompletion.Exactness.0.AdicCompletion.mapPreimage
Mathlib.RingTheory.AdicCompletion.Exactness
{R : Type u} β†’ [inst : CommRing R] β†’ {I : Ideal R} β†’ {M : Type v} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ {N : Type w} β†’ [inst_3 : AddCommGroup N] β†’ [inst_4 : Module R N] β†’ {f : M β†’β‚—[R] N} β†’ Function.Surjective ⇑f β†’ (x : AdicCompletion.AdicCauchySequence I N) β†’ (n : β„•) β†’ ↑(⇑f ⁻¹' {↑x n})
Finsupp.subtypeDomain_sub
Mathlib.Data.Finsupp.Basic
βˆ€ {Ξ± : Type u_1} {G : Type u_8} [inst : AddGroup G] {p : Ξ± β†’ Prop} {v v' : Ξ± β†’β‚€ G}, Finsupp.subtypeDomain p (v - v') = Finsupp.subtypeDomain p v - Finsupp.subtypeDomain p v'
Std.HashMap.Raw.WF.filterMap
Std.Data.HashMap.AdditionalOperations
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {Ξ³ : Type w} [inst : BEq Ξ±] [inst_1 : Hashable Ξ±] {m : Std.HashMap.Raw Ξ± Ξ²} {f : Ξ± β†’ Ξ² β†’ Option Ξ³}, m.WF β†’ (Std.HashMap.Raw.filterMap f m).WF
Std.TreeMap.getKey_minKey!
Std.Data.TreeMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.TreeMap Ξ± Ξ² cmp} [Std.TransCmp cmp] [inst : Inhabited Ξ±] {hc : t.minKey! ∈ t}, t.getKey t.minKey! hc = t.minKey!
_private.Lean.Elab.Do.Basic.0.Lean.Elab.Do.bindMutVarsFromTuple.go._sunfold
Lean.Elab.Do.Basic
Lean.Elab.Do.DoElabM Lean.Expr β†’ List Lean.Name β†’ Lean.FVarId β†’ Lean.Expr β†’ Array Lean.Expr β†’ Lean.Elab.Do.DoElabM Lean.Expr
MonoidHom.toOneHom_coe
Mathlib.Algebra.Group.Hom.Defs
βˆ€ {M : Type u_4} {N : Type u_5} [inst : MulOne M] [inst_1 : MulOne N] (f : M β†’* N), ⇑↑f = ⇑f
IsAddUnit.add_right_cancel
Mathlib.Algebra.Group.Units.Basic
βˆ€ {M : Type u_1} [inst : AddMonoid M] {a b c : M}, IsAddUnit b β†’ a + b = c + b β†’ a = c
_private.Batteries.Data.MLList.Basic.0.MLList.ofArray.go._unsafe_rec
Batteries.Data.MLList.Basic
{m : Type β†’ Type} β†’ {Ξ± : Type} β†’ Array Ξ± β†’ β„• β†’ MLList m Ξ±
OrderDual.ofDual_le_ofDual
Mathlib.Order.Synonym
βˆ€ {Ξ± : Type u_1} [inst : LE Ξ±] {a b : Ξ±α΅’α΅ˆ}, OrderDual.ofDual a ≀ OrderDual.ofDual b ↔ b ≀ a
List.append_eq
Init.Data.List.Basic
βˆ€ {Ξ± : Type u} {as bs : List Ξ±}, as.append bs = as ++ bs
fderivWithin_of_mem_nhds
Mathlib.Analysis.Calculus.FDeriv.Basic
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type u_3} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] {f : E β†’ F} {x : E} {s : Set E}, s ∈ nhds x β†’ fderivWithin π•œ f s x = fderiv π•œ f x
RingHom.Finite.finiteType
Mathlib.RingTheory.FiniteType
βˆ€ {A : Type u_1} {B : Type u_2} [inst : CommRing A] [inst_1 : CommRing B] {f : A β†’+* B}, f.Finite β†’ f.FiniteType
_private.Mathlib.Algebra.DirectSum.Internal.0.listProd_apply_eq_zero._simp_1_2
Mathlib.Algebra.DirectSum.Internal
βˆ€ {Ξ± : Sort u_1} {p q : Ξ± β†’ Prop} {a' : Ξ±}, (βˆ€ (a : Ξ±), a = a' ∨ q a β†’ p a) = (p a' ∧ βˆ€ (a : Ξ±), q a β†’ p a)
_private.Std.Data.DTreeMap.Internal.Lemmas.0.Std.DTreeMap.Internal.Impl.map_fst_toList_eq_keys._simp_1_2
Std.Data.DTreeMap.Internal.Lemmas
βˆ€ {Ξ± : Type u} {instOrd : Ord Ξ±} {a b : Ξ±}, (compare a b β‰  Ordering.eq) = ((a == b) = false)
Subalgebra.perfectClosure
Mathlib.FieldTheory.PurelyInseparable.Basic
(R : Type u_1) β†’ (A : Type u_2) β†’ [inst : CommSemiring R] β†’ [inst_1 : CommSemiring A] β†’ [inst_2 : Algebra R A] β†’ (p : β„•) β†’ [ExpChar A p] β†’ Subalgebra R A
Int.modEq_sub_modulus_mul_iff
Mathlib.Data.Int.ModEq
βˆ€ {n a b c : β„€}, a ≑ b - n * c [ZMOD n] ↔ a ≑ b [ZMOD n]
ProbabilityTheory.Kernel.iIndepFun.compβ‚€
Mathlib.Probability.Independence.Kernel.IndepFun
βˆ€ {Ξ± : Type u_1} {Ξ© : Type u_2} {ΞΉ : Type u_3} {mΞ± : MeasurableSpace Ξ±} {mΞ© : MeasurableSpace Ξ©} {ΞΊ : ProbabilityTheory.Kernel Ξ± Ξ©} {ΞΌ : MeasureTheory.Measure Ξ±} {Ξ² : ΞΉ β†’ Type u_8} {Ξ³ : ΞΉ β†’ Type u_9} {mΞ² : (i : ΞΉ) β†’ MeasurableSpace (Ξ² i)} {mΞ³ : (i : ΞΉ) β†’ MeasurableSpace (Ξ³ i)} {f : (i : ΞΉ) β†’ Ξ© β†’ Ξ² i}, ProbabilityTheory.Kernel.iIndepFun f ΞΊ ΞΌ β†’ βˆ€ (g : (i : ΞΉ) β†’ Ξ² i β†’ Ξ³ i), (βˆ€ (i : ΞΉ), AEMeasurable (f i) (ΞΌ.bind ⇑κ)) β†’ (βˆ€ (i : ΞΉ), AEMeasurable (g i) (MeasureTheory.Measure.map (f i) (ΞΌ.bind ⇑κ))) β†’ ProbabilityTheory.Kernel.iIndepFun (fun i => g i ∘ f i) ΞΊ ΞΌ
_private.Std.Data.Iterators.Lemmas.Producers.Monadic.List.0.Std.Iterators.ListIterator.stepAsHetT_iterM._simp_1_6
Std.Data.Iterators.Lemmas.Producers.Monadic.List
βˆ€ {Ξ± : Type w} {x y : Std.Iterators.ListIterator Ξ±}, (x = y) = (x.list = y.list)
Submodule.map._proof_1
Mathlib.Algebra.Module.Submodule.Map
βˆ€ {R : Type u_4} {Rβ‚‚ : Type u_5} {M : Type u_2} {Mβ‚‚ : Type u_3} [inst : Semiring R] [inst_1 : Semiring Rβ‚‚] [inst_2 : AddCommMonoid M] [inst_3 : AddCommMonoid Mβ‚‚] [inst_4 : Module R M] [inst_5 : Module Rβ‚‚ Mβ‚‚] {σ₁₂ : R β†’+* Rβ‚‚} {F : Type u_1} [inst_6 : FunLike F M Mβ‚‚] [SemilinearMapClass F σ₁₂ M Mβ‚‚], AddMonoidHomClass F M Mβ‚‚
Std.Do.Spec.forIn'_list._proof_5
Std.Do.Triple.SpecLemmas
βˆ€ {Ξ± : Type u_1} {xs : List Ξ±}, xs ++ [] = xs
Std.TreeMap.Raw.minKeyD_insert
Std.Data.TreeMap.Raw.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.TreeMap.Raw Ξ± Ξ² cmp} [Std.TransCmp cmp], t.WF β†’ βˆ€ {k : Ξ±} {v : Ξ²} {fallback : Ξ±}, (t.insert k v).minKeyD fallback = t.minKey?.elim k fun k' => if (cmp k k').isLE = true then k else k'
hasFDerivWithinAt_pi'
Mathlib.Analysis.Calculus.FDeriv.Prod
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {x : E} {s : Set E} {ΞΉ : Type u_6} [Fintype ΞΉ] {F' : ΞΉ β†’ Type u_7} [inst_4 : (i : ΞΉ) β†’ NormedAddCommGroup (F' i)] [inst_5 : (i : ΞΉ) β†’ NormedSpace π•œ (F' i)] {Ξ¦ : E β†’ (i : ΞΉ) β†’ F' i} {Ξ¦' : E β†’L[π•œ] (i : ΞΉ) β†’ F' i}, HasFDerivWithinAt Ξ¦ Ξ¦' s x ↔ βˆ€ (i : ΞΉ), HasFDerivWithinAt (fun x => Ξ¦ x i) ((ContinuousLinearMap.proj i).comp Ξ¦') s x
Functor.map_unit
Init.Control.Lawful.Basic
βˆ€ {f : Type u_1 β†’ Type u_2} [inst : Functor f] [LawfulFunctor f] {a : f PUnit.{u_1 + 1}}, (fun x => PUnit.unit) <$> a = a
Sym.filterNe._proof_1
Mathlib.Data.Sym.Basic
βˆ€ {Ξ± : Type u_1} {n : β„•} [inst : DecidableEq Ξ±] (a : Ξ±) (m : Sym Ξ± n), Multiset.count a ↑m < n + 1
Lean.IR.Expr.proj.elim
Lean.Compiler.IR.Basic
{motive : Lean.IR.Expr β†’ Sort u} β†’ (t : Lean.IR.Expr) β†’ t.ctorIdx = 3 β†’ ((i : β„•) β†’ (x : Lean.IR.VarId) β†’ motive (Lean.IR.Expr.proj i x)) β†’ motive t
SkewMonoidAlgebra.noConfusion
Mathlib.Algebra.SkewMonoidAlgebra.Basic
{k : Type u_1} β†’ {G : Type u_2} β†’ [inst : Zero k] β†’ {P : Sort u} β†’ {x1 x2 : SkewMonoidAlgebra k G} β†’ x1 = x2 β†’ SkewMonoidAlgebra.noConfusionType P x1 x2
Vector.getElem?_append_right
Init.Data.Vector.Lemmas
βˆ€ {Ξ± : Type u_1} {n m i : β„•} {xs : Vector Ξ± n} {ys : Vector Ξ± m}, n ≀ i β†’ (xs ++ ys)[i]? = ys[i - n]?