name
stringlengths 2
347
| module
stringlengths 6
90
| type
stringlengths 1
5.42M
|
|---|---|---|
NNRat.instContinuousSub
|
Mathlib.Topology.Instances.Rat
|
ContinuousSub ββ₯0
|
FinPartOrd.Iso.mk_inv
|
Mathlib.Order.Category.FinPartOrd
|
β {Ξ± Ξ² : FinPartOrd} (e : βΞ±.toPartOrd βo βΞ².toPartOrd), (FinPartOrd.Iso.mk e).inv = FinPartOrd.ofHom βe.symm
|
Std.TreeSet.Raw.min?_insert_le_self
|
Std.Data.TreeSet.Raw.Lemmas
|
β {Ξ± : Type u} {cmp : Ξ± β Ξ± β Ordering} {t : Std.TreeSet.Raw Ξ± cmp} [inst : Std.TransCmp cmp] (h : t.WF) {k kmi : Ξ±},
(t.insert k).min?.get β― = kmi β (cmp kmi k).isLE = true
|
ContinuousMap.casesOn
|
Mathlib.Topology.ContinuousMap.Defs
|
{X : Type u_1} β
{Y : Type u_2} β
[inst : TopologicalSpace X] β
[inst_1 : TopologicalSpace Y] β
{motive : C(X, Y) β Sort u} β
(t : C(X, Y)) β
((toFun : X β Y) β
(continuous_toFun : Continuous toFun) β
motive { toFun := toFun, continuous_toFun := continuous_toFun }) β
motive t
|
_private.Mathlib.Topology.Instances.RatLemmas.0.Β«termββΒ»
|
Mathlib.Topology.Instances.RatLemmas
|
Lean.ParserDescr
|
_private.Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality.0.groupHomology.mapCyclesβ_quotientGroupMk'_epi._simp_3
|
Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
|
β {G : Type u_1} [inst : Group G] (N : Subgroup G) [nN : N.Normal] (a : G), (βa)β»ΒΉ = βaβ»ΒΉ
|
EReal.neg_eq_top_iff
|
Mathlib.Data.EReal.Operations
|
β {x : EReal}, -x = β€ β x = β₯
|
ModuleCat.CoextendScalars.obj'
|
Mathlib.Algebra.Category.ModuleCat.ChangeOfRings
|
{R : Type uβ} β {S : Type uβ} β [inst : Ring R] β [inst_1 : Ring S] β (R β+* S) β ModuleCat R β ModuleCat S
|
_private.Mathlib.Tactic.Push.0.Mathlib.Tactic.Push.pushNegBuiltin._sparseCasesOn_2
|
Mathlib.Tactic.Push
|
{motive : Lean.Expr β Sort u} β
(t : Lean.Expr) β ((fn arg : Lean.Expr) β motive (fn.app arg)) β (t.ctorIdx β 5 β motive t) β motive t
|
Matroid.isBasis_iff_isBasis'_subset_ground
|
Mathlib.Combinatorics.Matroid.Basic
|
β {Ξ± : Type u_1} {M : Matroid Ξ±} {I X : Set Ξ±}, M.IsBasis I X β M.IsBasis' I X β§ X β M.E
|
ContinuousAffineMap.coe_const
|
Mathlib.Topology.Algebra.ContinuousAffineMap
|
β (R : Type u_1) {V : Type u_2} {W : Type u_3} (P : Type u_4) {Q : Type u_5} [inst : Ring R] [inst_1 : AddCommGroup V]
[inst_2 : Module R V] [inst_3 : TopologicalSpace P] [inst_4 : AddTorsor V P] [inst_5 : AddCommGroup W]
[inst_6 : Module R W] [inst_7 : TopologicalSpace Q] [inst_8 : AddTorsor W Q] (q : Q),
β(ContinuousAffineMap.const R P q) = Function.const P q
|
Polynomial.cyclotomic.roots_eq_primitiveRoots_val
|
Mathlib.RingTheory.Polynomial.Cyclotomic.Roots
|
β {R : Type u_1} [inst : CommRing R] {n : β} [inst_1 : IsDomain R] [NeZero βn],
(Polynomial.cyclotomic n R).roots = (primitiveRoots n R).val
|
_private.Mathlib.Tactic.FBinop.0.FBinopElab.AnalyzeResult.maxS?._default
|
Mathlib.Tactic.FBinop
|
Option FBinopElab.SRec
|
_private.Mathlib.RingTheory.Congruence.Hom.0.RingCon.mapGen_apply_apply_of_surjective.match_1_1
|
Mathlib.RingTheory.Congruence.Hom
|
β {M : Type u_1} {N : Type u_2} [inst : NonAssocSemiring M] [inst_1 : NonAssocSemiring N] {c : RingCon M} (f : M β+* N)
{x y : M} (motive : (β a b, c a b β§ f a = f x β§ f b = f y) β Prop) (x_1 : β a b, c a b β§ f a = f x β§ f b = f y),
(β (a b : M) (hβ : c a b) (hβ : f a = f x) (hβ : f b = f y), motive β―) β motive x_1
|
Module.FaithfullyFlat.iff_exact_iff_rTensor_exact
|
Mathlib.RingTheory.Flat.FaithfullyFlat.Basic
|
β (R : Type u) (M : Type v) [inst : CommRing R] [inst_1 : AddCommGroup M] [inst_2 : Module R M],
Module.FaithfullyFlat R M β
β {N1 : Type (max u v)} [inst_3 : AddCommGroup N1] [inst_4 : Module R N1] {N2 : Type (max u v)}
[inst_5 : AddCommGroup N2] [inst_6 : Module R N2] {N3 : Type (max u v)} [inst_7 : AddCommGroup N3]
[inst_8 : Module R N3] (l12 : N1 ββ[R] N2) (l23 : N2 ββ[R] N3),
Function.Exact βl12 βl23 β Function.Exact β(LinearMap.rTensor M l12) β(LinearMap.rTensor M l23)
|
Complex.addCommGroup._proof_11
|
Mathlib.Data.Complex.Basic
|
β (a b : β), a + b = b + a
|
KummerDedekind.normalizedFactorsMapEquivNormalizedFactorsMinPolyMk._proof_2
|
Mathlib.NumberTheory.KummerDedekind
|
β {R : Type u_1} [inst : CommRing R] {I : Ideal R} (hI : I.IsMaximal),
UniqueFactorizationMonoid (Ideal (Polynomial (R β§Έ I)))
|
UpperSemicontinuous.inf
|
Mathlib.Topology.Semicontinuous
|
β {Ξ± : Type u_3} {Ξ² : Type u_4} [inst : TopologicalSpace Ξ±] [inst_1 : LinearOrder Ξ²] {f g : Ξ± β Ξ²},
UpperSemicontinuous f β UpperSemicontinuous g β UpperSemicontinuous fun x => min (f x) (g x)
|
Equiv.Perm.sigmaCongrRight_refl
|
Mathlib.Logic.Equiv.Defs
|
β {Ξ± : Type u_1} {Ξ² : Ξ± β Type u_2}, (Equiv.Perm.sigmaCongrRight fun a => Equiv.refl (Ξ² a)) = Equiv.refl ((a : Ξ±) Γ Ξ² a)
|
UInt64.toUInt32_ofNatLT
|
Init.Data.UInt.Lemmas
|
β {n : β} (hn : n < UInt64.size), (UInt64.ofNatLT n hn).toUInt32 = UInt32.ofNat n
|
CategoryTheory.Grp.instMonoidalCategory._proof_8
|
Mathlib.CategoryTheory.Monoidal.Grp_
|
β {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.CartesianMonoidalCategory C]
[inst_2 : CategoryTheory.BraidedCategory C] {X Y : CategoryTheory.Grp C} (f : X βΆ Y),
CategoryTheory.CategoryStruct.comp
(CategoryTheory.MonoidalCategoryStruct.whiskerRight f
(CategoryTheory.MonoidalCategoryStruct.tensorUnit (CategoryTheory.Grp C)))
(CategoryTheory.MonoidalCategoryStruct.rightUnitor Y).hom =
CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.rightUnitor X).hom f
|
_private.Lean.Compiler.IR.FreeVars.0.Lean.IR.MaxIndex.visitExpr
|
Lean.Compiler.IR.FreeVars
|
Lean.IR.Expr β Lean.IR.MaxIndex.M Unit
|
ENNReal.toNNReal_zero
|
Mathlib.Data.ENNReal.Basic
|
ENNReal.toNNReal 0 = 0
|
_private.Mathlib.LinearAlgebra.Goursat.0.Submodule.goursat._simp_1_13
|
Mathlib.LinearAlgebra.Goursat
|
β {Ξ± : Sort u} {p : Ξ± β Prop} {a1 a2 : { x // p x }}, (a1 = a2) = (βa1 = βa2)
|
Aesop.PhaseSpec.safe.elim
|
Aesop.Builder.Basic
|
{motive : Aesop.PhaseSpec β Sort u} β
(t : Aesop.PhaseSpec) β t.ctorIdx = 0 β ((info : Aesop.SafeRuleInfo) β motive (Aesop.PhaseSpec.safe info)) β motive t
|
Std.DTreeMap.Internal.Impl.toList_map
|
Std.Data.DTreeMap.Internal.Lemmas
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} {instOrd : Ord Ξ±} {t : Std.DTreeMap.Internal.Impl Ξ± Ξ²} {Ξ³ : Ξ± β Type w}
{f : (a : Ξ±) β Ξ² a β Ξ³ a},
(Std.DTreeMap.Internal.Impl.map f t).toList = List.map (fun p => β¨p.fst, f p.fst p.sndβ©) t.toList
|
ContinuousLinearMap.ratio_le_opNorm
|
Mathlib.Analysis.Normed.Operator.Basic
|
β {π : Type u_1} {πβ : Type u_2} {E : Type u_4} {F : Type u_5} [inst : SeminormedAddCommGroup E]
[inst_1 : SeminormedAddCommGroup F] [inst_2 : NontriviallyNormedField π] [inst_3 : NontriviallyNormedField πβ]
[inst_4 : NormedSpace π E] [inst_5 : NormedSpace πβ F] {Οββ : π β+* πβ} [RingHomIsometric Οββ] (f : E βSL[Οββ] F)
(x : E), βf xβ / βxβ β€ βfβ
|
Aesop.LocalRuleSet.mk.noConfusion
|
Aesop.RuleSet
|
(P : Sort u) β
(toBaseRuleSet : Aesop.BaseRuleSet) β
(simpTheoremsArray : Array (Lean.Name Γ Lean.Meta.SimpTheorems)) β
(simpTheoremsArrayNonempty : 0 < simpTheoremsArray.size) β
(simprocsArray : Array (Lean.Name Γ Lean.Meta.Simprocs)) β
(simprocsArrayNonempty : 0 < simprocsArray.size) β
(localNormSimpRules : Array Aesop.LocalNormSimpRule) β
(toBaseRuleSet' : Aesop.BaseRuleSet) β
(simpTheoremsArray' : Array (Lean.Name Γ Lean.Meta.SimpTheorems)) β
(simpTheoremsArrayNonempty' : 0 < simpTheoremsArray'.size) β
(simprocsArray' : Array (Lean.Name Γ Lean.Meta.Simprocs)) β
(simprocsArrayNonempty' : 0 < simprocsArray'.size) β
(localNormSimpRules' : Array Aesop.LocalNormSimpRule) β
{ toBaseRuleSet := toBaseRuleSet, simpTheoremsArray := simpTheoremsArray,
simpTheoremsArrayNonempty := simpTheoremsArrayNonempty, simprocsArray := simprocsArray,
simprocsArrayNonempty := simprocsArrayNonempty,
localNormSimpRules := localNormSimpRules } =
{ toBaseRuleSet := toBaseRuleSet', simpTheoremsArray := simpTheoremsArray',
simpTheoremsArrayNonempty := simpTheoremsArrayNonempty',
simprocsArray := simprocsArray', simprocsArrayNonempty := simprocsArrayNonempty',
localNormSimpRules := localNormSimpRules' } β
(toBaseRuleSet = toBaseRuleSet' β
simpTheoremsArray = simpTheoremsArray' β
simprocsArray = simprocsArray' β localNormSimpRules = localNormSimpRules' β P) β
P
|
Nonneg.nat_ceil_coe
|
Mathlib.Algebra.Order.Nonneg.Floor
|
β {Ξ± : Type u_1} [inst : Semiring Ξ±] [inst_1 : PartialOrder Ξ±] [inst_2 : IsOrderedRing Ξ±] [inst_3 : FloorSemiring Ξ±]
(a : { r // 0 β€ r }), ββaββ = βaββ
|
Std.DTreeMap.Internal.Impl.minKey?_insert!_le_minKey?
|
Std.Data.DTreeMap.Internal.Lemmas
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} {instOrd : Ord Ξ±} {t : Std.DTreeMap.Internal.Impl Ξ± Ξ²} [inst : Std.TransOrd Ξ±]
(h : t.WF) {k : Ξ±} {v : Ξ² k} {km kmi : Ξ±},
t.minKey? = some km β (Std.DTreeMap.Internal.Impl.insert! k v t).minKey?.get β― = kmi β (compare kmi km).isLE = true
|
Set.inclusion_inclusion
|
Mathlib.Data.Set.Inclusion
|
β {Ξ± : Type u_1} {s t u : Set Ξ±} (hst : s β t) (htu : t β u) (x : βs),
Set.inclusion htu (Set.inclusion hst x) = Set.inclusion β― x
|
CategoryTheory.ShortComplex.SnakeInput.Lβ'_exact
|
Mathlib.Algebra.Homology.ShortComplex.SnakeLemma
|
β {C : Type u_1} [inst : CategoryTheory.Category.{u_2, u_1} C] [inst_1 : CategoryTheory.Abelian C]
(S : CategoryTheory.ShortComplex.SnakeInput C), S.Lβ'.Exact
|
Sym.coe_equivNatSumOfFintype_apply_apply
|
Mathlib.Data.Finsupp.Multiset
|
β (Ξ± : Type u_1) [inst : DecidableEq Ξ±] (n : β) [inst_1 : Fintype Ξ±] (s : Sym Ξ± n) (a : Ξ±),
β((Sym.equivNatSumOfFintype Ξ± n) s) a = Multiset.count a βs
|
Aesop.Script.STactic.ctorIdx
|
Aesop.Script.Tactic
|
Aesop.Script.STactic β β
|
SemiNormedGrp.explicitCokernel
|
Mathlib.Analysis.Normed.Group.SemiNormedGrp.Kernels
|
{X Y : SemiNormedGrp} β (X βΆ Y) β SemiNormedGrp
|
Lean.Grind.Linarith.le_lt_combine_cert
|
Init.Grind.Ordered.Linarith
|
Lean.Grind.Linarith.Poly β Lean.Grind.Linarith.Poly β Lean.Grind.Linarith.Poly β Bool
|
AddSubsemigroup.toSubsemigroup_closure
|
Mathlib.Algebra.Group.Subsemigroup.Operations
|
β {A : Type u_5} [inst : Add A] (S : Set A),
AddSubsemigroup.toSubsemigroup (AddSubsemigroup.closure S) = Subsemigroup.closure (βMultiplicative.toAdd β»ΒΉ' S)
|
Lean.Expr.containsFVar
|
Lean.Expr
|
Lean.Expr β Lean.FVarId β Bool
|
_private.Batteries.Data.Char.Basic.0.Char.of_any_eq_false_aux._proof_1_12
|
Batteries.Data.Char.Basic
|
β {p : Char β Bool} (n : β),
n.isValidChar β
((β x β List.finRange Char.minSurrogate, Β¬p (Char.ofNatAux βx β―) = true) β§
β x β List.finRange (Char.max - Char.maxSurrogate), Β¬p (Char.ofNatAux (βx + Char.maxSurrogate + 1) β―) = true) β
β (hn : n < 55296), Β¬p (Char.ofNatAux ββ¨n, hnβ© β―) = true β p (Char.ofNatAux n β―) = false
|
Aesop.instToJsonPhaseName.toJson
|
Aesop.Rule.Name
|
Aesop.PhaseName β Lean.Json
|
_private.Lean.Elab.Match.0.Lean.Elab.Term.getIndexToInclude?
|
Lean.Elab.Match
|
Lean.Expr β List β β Lean.Elab.TermElabM (Option Lean.Expr)
|
Std.DTreeMap.Internal.Impl.toListModel_insertMin
|
Std.Data.DTreeMap.Internal.WF.Lemmas
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} [Ord Ξ±] {k : Ξ±} {v : Ξ² k} {t : Std.DTreeMap.Internal.Impl Ξ± Ξ²} {h : t.Balanced},
(Std.DTreeMap.Internal.Impl.insertMin k v t h).impl.toListModel = β¨k, vβ© :: t.toListModel
|
_auto._@.Mathlib.AlgebraicTopology.SimplicialSet.CompStruct.1528653550._hygCtx._hyg.93
|
Mathlib.AlgebraicTopology.SimplicialSet.CompStruct
|
Lean.Syntax
|
ContinuousAffineMap._sizeOf_inst
|
Mathlib.Topology.Algebra.ContinuousAffineMap
|
(R : Type u_1) β
{V : Type u_2} β
{W : Type u_3} β
(P : Type u_4) β
(Q : Type u_5) β
{inst : Ring R} β
{inst_1 : AddCommGroup V} β
{inst_2 : Module R V} β
{inst_3 : TopologicalSpace P} β
{inst_4 : AddTorsor V P} β
{inst_5 : AddCommGroup W} β
{inst_6 : Module R W} β
{inst_7 : TopologicalSpace Q} β
{inst_8 : AddTorsor W Q} β
[SizeOf R] β [SizeOf V] β [SizeOf W] β [SizeOf P] β [SizeOf Q] β SizeOf (P βᴬ[R] Q)
|
MulOpposite.instNonUnitalCommCStarAlgebra._proof_1
|
Mathlib.Analysis.CStarAlgebra.Classes
|
β {A : Type u_1} [inst : NonUnitalCommCStarAlgebra A], CompleteSpace Aα΅α΅α΅
|
FormalMultilinearSeries.ofScalars_radius_eq_inv_of_tendsto_ENNReal
|
Mathlib.Analysis.Analytic.OfScalars
|
β {π : Type u_1} (E : Type u_2) [inst : NontriviallyNormedField π] [inst_1 : NormedRing E] [inst_2 : NormedAlgebra π E]
(c : β β π) [NormOneClass E] {r : ENNReal},
Filter.Tendsto (fun n => ENNReal.ofReal βc n.succβ / ENNReal.ofReal βc nβ) Filter.atTop (nhds r) β
(FormalMultilinearSeries.ofScalars E c).radius = rβ»ΒΉ
|
LinearIsometryEquiv.instEquivLike._proof_1
|
Mathlib.Analysis.Normed.Operator.LinearIsometry
|
β {R : Type u_1} {Rβ : Type u_2} {E : Type u_3} {Eβ : Type u_4} [inst : Semiring R] [inst_1 : Semiring Rβ]
{Οββ : R β+* Rβ} {Οββ : Rβ β+* R} [inst_2 : RingHomInvPair Οββ Οββ] [inst_3 : RingHomInvPair Οββ Οββ]
[inst_4 : SeminormedAddCommGroup E] [inst_5 : SeminormedAddCommGroup Eβ] [inst_6 : Module R E] [inst_7 : Module Rβ Eβ]
(e : E βββα΅’[Οββ] Eβ), Function.LeftInverse e.invFun (βe.toLinearEquiv).toFun
|
_private.Init.Data.Iterators.Consumers.Access.0.Std.Iterators.Iter.atIdxSlow?.match_3.eq_3
|
Init.Data.Iterators.Consumers.Access
|
β {Ξ± Ξ² : Type u_1} [inst : Std.Iterators.Iterator Ξ± Id Ξ²] (it : Std.Iter Ξ²) (motive : it.Step β Sort u_2)
(property : it.IsPlausibleStep Std.Iterators.IterStep.done)
(h_1 :
(it' : Std.Iter Ξ²) β
(out : Ξ²) β
(property : it.IsPlausibleStep (Std.Iterators.IterStep.yield it' out)) β
motive β¨Std.Iterators.IterStep.yield it' out, propertyβ©)
(h_2 :
(it' : Std.Iter Ξ²) β
(property : it.IsPlausibleStep (Std.Iterators.IterStep.skip it')) β
motive β¨Std.Iterators.IterStep.skip it', propertyβ©)
(h_3 : (property : it.IsPlausibleStep Std.Iterators.IterStep.done) β motive β¨Std.Iterators.IterStep.done, propertyβ©),
(match β¨Std.Iterators.IterStep.done, propertyβ© with
| β¨Std.Iterators.IterStep.yield it' out, propertyβ© => h_1 it' out property
| β¨Std.Iterators.IterStep.skip it', propertyβ© => h_2 it' property
| β¨Std.Iterators.IterStep.done, propertyβ© => h_3 property) =
h_3 property
|
CategoryTheory.ShortComplex.Homotopy.sub
|
Mathlib.Algebra.Homology.ShortComplex.Preadditive
|
{C : Type u_1} β
[inst : CategoryTheory.Category.{u_2, u_1} C] β
[inst_1 : CategoryTheory.Preadditive C] β
{Sβ Sβ : CategoryTheory.ShortComplex C} β
{Οβ Οβ Οβ Οβ : Sβ βΆ Sβ} β
CategoryTheory.ShortComplex.Homotopy Οβ Οβ β
CategoryTheory.ShortComplex.Homotopy Οβ Οβ β CategoryTheory.ShortComplex.Homotopy (Οβ - Οβ) (Οβ - Οβ)
|
Batteries.CodeAction.TacticCodeActionEntry.mk.inj
|
Batteries.CodeAction.Attr
|
β {declName : Lean.Name} {tacticKinds : Array Lean.Name} {declName_1 : Lean.Name} {tacticKinds_1 : Array Lean.Name},
{ declName := declName, tacticKinds := tacticKinds } = { declName := declName_1, tacticKinds := tacticKinds_1 } β
declName = declName_1 β§ tacticKinds = tacticKinds_1
|
Finset.min'_eq_sorted_zero
|
Mathlib.Data.Finset.Sort
|
β {Ξ± : Type u_1} [inst : LinearOrder Ξ±] {s : Finset Ξ±} {h : s.Nonempty}, s.min' h = (s.sort fun a b => a β€ b)[0]
|
Finsupp.orderIsoMultiset._simp_2
|
Mathlib.Data.Finsupp.Multiset
|
β {Ξ± : Type u_1} [inst : DecidableEq Ξ±] {s t : Multiset Ξ±}, (s β€ t) = β (a : Ξ±), Multiset.count a s β€ Multiset.count a t
|
RingCon.coe_zsmul._simp_1
|
Mathlib.RingTheory.Congruence.Defs
|
β {R : Type u_1} [inst : AddGroup R] [inst_1 : Mul R] (c : RingCon R) (z : β€) (x : R), z β’ βx = β(z β’ x)
|
Function.update_comp_eq_of_forall_ne'
|
Mathlib.Logic.Function.Basic
|
β {Ξ± : Sort u} {Ξ² : Ξ± β Sort v} [inst : DecidableEq Ξ±] {Ξ±' : Sort u_1} (g : (a : Ξ±) β Ξ² a) {f : Ξ±' β Ξ±} {i : Ξ±}
(a : Ξ² i), (β (x : Ξ±'), f x β i) β (fun j => Function.update g i a (f j)) = fun j => g (f j)
|
Module.Finite.exists_fin_quot_equiv
|
Mathlib.RingTheory.Finiteness.Cardinality
|
β (R : Type u_3) (M : Type u_4) [inst : Ring R] [inst_1 : AddCommGroup M] [inst_2 : Module R M] [Module.Finite R M],
β n S, Nonempty (((Fin n β R) β§Έ S) ββ[R] M)
|
Lean.Lsp.TextDocumentEdit.ctorIdx
|
Lean.Data.Lsp.Basic
|
Lean.Lsp.TextDocumentEdit β β
|
Vector.instDecidableExistsVectorZero
|
Init.Data.Vector.Lemmas
|
{Ξ± : Type u_1} β (P : Vector Ξ± 0 β Prop) β [Decidable (P #v[])] β Decidable (β xs, P xs)
|
AddCommGrpCat.hasColimit_of_small_quot
|
Mathlib.Algebra.Category.Grp.Colimits
|
β {J : Type u} [inst : CategoryTheory.Category.{v, u} J] (F : CategoryTheory.Functor J AddCommGrpCat)
[inst_1 : DecidableEq J], Small.{w, max u w} (AddCommGrpCat.Colimits.Quot F) β CategoryTheory.Limits.HasColimit F
|
_private.Mathlib.Topology.Inseparable.0.inseparable_prod._simp_1_2
|
Mathlib.Topology.Inseparable
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} {fβ fβ : Filter Ξ±} {gβ gβ : Filter Ξ²} [fβ.NeBot] [gβ.NeBot],
(fβ ΓΛ’ gβ = fβ ΓΛ’ gβ) = (fβ = fβ β§ gβ = gβ)
|
Subsemigroup.comap_top
|
Mathlib.Algebra.Group.Subsemigroup.Operations
|
β {M : Type u_1} {N : Type u_2} [inst : Mul M] [inst_1 : Mul N] (f : M ββ* N), Subsemigroup.comap f β€ = β€
|
MeasureTheory.SimpleFunc.instNonAssocSemiring._proof_4
|
Mathlib.MeasureTheory.Function.SimpleFunc
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : MeasurableSpace Ξ±] [inst_1 : NonAssocSemiring Ξ²]
(a : MeasureTheory.SimpleFunc Ξ± Ξ²), 1 * a = a
|
CategoryTheory.linearCoyoneda._proof_3
|
Mathlib.CategoryTheory.Linear.Yoneda
|
β (R : Type u_3) [inst : Ring R] (C : Type u_2) [inst_1 : CategoryTheory.Category.{u_1, u_2} C]
[inst_2 : CategoryTheory.Preadditive C] [inst_3 : CategoryTheory.Linear R C] {Yβ Yβ : Cα΅α΅} (f : Yβ βΆ Yβ) β¦X Y : Cβ¦
(f_1 : X βΆ Y),
CategoryTheory.CategoryStruct.comp
({ obj := fun X => ModuleCat.of R (Opposite.unop Yβ βΆ X),
map := fun {X Y} f => ModuleCat.ofHom (CategoryTheory.Linear.rightComp R (Opposite.unop Yβ) f), map_id := β―,
map_comp := β― }.map
f_1)
(ModuleCat.ofHom (CategoryTheory.Linear.leftComp R Y f.unop)) =
CategoryTheory.CategoryStruct.comp (ModuleCat.ofHom (CategoryTheory.Linear.leftComp R X f.unop))
({ obj := fun X => ModuleCat.of R (Opposite.unop Yβ βΆ X),
map := fun {X Y} f => ModuleCat.ofHom (CategoryTheory.Linear.rightComp R (Opposite.unop Yβ) f), map_id := β―,
map_comp := β― }.map
f_1)
|
_private.Mathlib.RingTheory.Polynomial.Bernstein.0.bernsteinPolynomial.variance._simp_1_2
|
Mathlib.RingTheory.Polynomial.Bernstein
|
β {G : Type u_1} [inst : Semigroup G] (a b c : G), a * (b * c) = a * b * c
|
normalize_eq_zero._simp_1
|
Mathlib.Algebra.GCDMonoid.Basic
|
β {Ξ± : Type u_1} [inst : CancelCommMonoidWithZero Ξ±] [inst_1 : NormalizationMonoid Ξ±] {x : Ξ±},
(normalize x = 0) = (x = 0)
|
CategoryTheory.Functor.mapCoconeWhisker_hom_hom
|
Mathlib.CategoryTheory.Limits.Cones
|
β {J : Type uβ} [inst : CategoryTheory.Category.{vβ, uβ} J] {K : Type uβ} [inst_1 : CategoryTheory.Category.{vβ, uβ} K]
{C : Type uβ} [inst_2 : CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ}
[inst_3 : CategoryTheory.Category.{vβ, uβ} D] (H : CategoryTheory.Functor C D) {F : CategoryTheory.Functor J C}
{E : CategoryTheory.Functor K J} {c : CategoryTheory.Limits.Cocone F},
H.mapCoconeWhisker.hom.hom = CategoryTheory.CategoryStruct.id (H.obj c.pt)
|
Polynomial.orderOf_root_cyclotomic_dvd
|
Mathlib.RingTheory.Polynomial.Cyclotomic.Basic
|
β {n : β} (hpos : 0 < n) {p : β} [inst : Fact (Nat.Prime p)] {a : β}
(hroot : (Polynomial.cyclotomic n (ZMod p)).IsRoot ((Nat.castRingHom (ZMod p)) a)),
orderOf (ZMod.unitOfCoprime a β―) β£ n
|
Equiv.setCongr
|
Mathlib.Logic.Equiv.Set
|
{Ξ± : Type u_3} β {s t : Set Ξ±} β s = t β βs β βt
|
_private.Mathlib.GroupTheory.SpecificGroups.Dihedral.0.instDecidableEqDihedralGroup.decEq.match_1.eq_4
|
Mathlib.GroupTheory.SpecificGroups.Dihedral
|
β {n : β} (motive : DihedralGroup n β DihedralGroup n β Sort u_1) (a b : ZMod n)
(h_1 : (a b : ZMod n) β motive (DihedralGroup.r a) (DihedralGroup.r b))
(h_2 : (a a_1 : ZMod n) β motive (DihedralGroup.r a) (DihedralGroup.sr a_1))
(h_3 : (a a_1 : ZMod n) β motive (DihedralGroup.sr a) (DihedralGroup.r a_1))
(h_4 : (a b : ZMod n) β motive (DihedralGroup.sr a) (DihedralGroup.sr b)),
(match DihedralGroup.sr a, DihedralGroup.sr b with
| DihedralGroup.r a, DihedralGroup.r b => h_1 a b
| DihedralGroup.r a, DihedralGroup.sr a_1 => h_2 a a_1
| DihedralGroup.sr a, DihedralGroup.r a_1 => h_3 a a_1
| DihedralGroup.sr a, DihedralGroup.sr b => h_4 a b) =
h_4 a b
|
antitone_toDual_comp_iff
|
Mathlib.Order.Monotone.Basic
|
β {Ξ± : Type u} {Ξ² : Type v} [inst : Preorder Ξ±] [inst_1 : Preorder Ξ²] {f : Ξ± β Ξ²},
Antitone (βOrderDual.toDual β f) β Monotone f
|
MulEquiv.piMultiplicative._proof_2
|
Mathlib.Algebra.Group.Equiv.TypeTags
|
β {ΞΉ : Type u_2} (K : ΞΉ β Type u_1) (x : (i : ΞΉ) β Multiplicative (K i)),
(fun i => Multiplicative.ofAdd (Multiplicative.toAdd (Multiplicative.ofAdd fun i => Multiplicative.toAdd (x i)) i)) =
fun i => Multiplicative.ofAdd (Multiplicative.toAdd (Multiplicative.ofAdd fun i => Multiplicative.toAdd (x i)) i)
|
_private.Mathlib.MeasureTheory.Constructions.BorelSpace.Basic.0.Pi.opensMeasurableSpace_of_subsingleton._simp_2
|
Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} [t : TopologicalSpace Ξ²] {f : Ξ± β Ξ²} {s : Set Ξ±},
IsOpen s = (s β Set.preimage f '' {s | IsOpen s})
|
_private.Init.Data.BitVec.Lemmas.0.BitVec.shiftLeft_eq_concat_of_lt._proof_1_1
|
Init.Data.BitVec.Lemmas
|
β {w n : β}, β i < w, Β¬i < n β Β¬i - n < w β False
|
ContDiffMapSupportedIn._sizeOf_inst
|
Mathlib.Analysis.Distribution.ContDiffMapSupportedIn
|
(E : Type u_2) β
(F : Type u_3) β
{inst : NormedAddCommGroup E} β
{inst_1 : NormedSpace β E} β
{inst_2 : NormedAddCommGroup F} β
{inst_3 : NormedSpace β F} β
(n : ββ) β
(K : TopologicalSpace.Compacts E) β [SizeOf E] β [SizeOf F] β SizeOf (ContDiffMapSupportedIn E F n K)
|
Rep.indCoindIso
|
Mathlib.RepresentationTheory.FiniteIndex
|
{k G : Type u} β
[inst : CommRing k] β
[inst_1 : Group G] β
{S : Subgroup G} β
[DecidableRel β(QuotientGroup.rightRel S)] β
(A : Rep k β₯S) β [S.FiniteIndex] β Rep.ind S.subtype A β
Rep.coind S.subtype A
|
_private.Mathlib.Combinatorics.SetFamily.AhlswedeZhang.0.Finset.sups_aux
|
Mathlib.Combinatorics.SetFamily.AhlswedeZhang
|
β {Ξ± : Type u_1} [inst : DistribLattice Ξ±] [inst_1 : DecidableEq Ξ±] {s t : Finset Ξ±} {a : Ξ±},
a β upperClosure β(s β» t) β a β upperClosure βs β§ a β upperClosure βt
|
Associates.instLattice.congr_simp
|
Mathlib.RingTheory.UniqueFactorizationDomain.GCDMonoid
|
β {Ξ± : Type u_1} [inst : CancelCommMonoidWithZero Ξ±] [inst_1 : UniqueFactorizationMonoid Ξ±],
Associates.instLattice = Associates.instLattice
|
List.reverseAux_reverseAux_nil
|
Init.Data.List.Lemmas
|
β {Ξ± : Type u_1} {as bs : List Ξ±}, (as.reverseAux bs).reverseAux [] = bs.reverseAux as
|
CategoryTheory.eHom_whisker_cancel_inv
|
Mathlib.CategoryTheory.Enriched.Ordinary.Basic
|
β (V : Type u') [inst : CategoryTheory.Category.{v', u'} V] [inst_1 : CategoryTheory.MonoidalCategory V] {C : Type u}
[inst_2 : CategoryTheory.Category.{v, u} C] [inst_3 : CategoryTheory.EnrichedOrdinaryCategory V C] {X Y Yβ Z : C}
(Ξ± : Y β
Yβ),
CategoryTheory.CategoryStruct.comp
(CategoryTheory.MonoidalCategoryStruct.whiskerRight (CategoryTheory.eHomWhiskerLeft V X Ξ±.inv) (Yβ βΆ[V] Z))
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.MonoidalCategoryStruct.whiskerLeft (X βΆ[V] Y) (CategoryTheory.eHomWhiskerRight V Ξ±.hom Z))
(CategoryTheory.eComp V X Y Z)) =
CategoryTheory.eComp V X Yβ Z
|
_private.Mathlib.Data.Fin.Tuple.Reflection.0.FinVec.Forall.match_1.eq_1
|
Mathlib.Data.Fin.Tuple.Reflection
|
β {Ξ± : Type u_2} (motive : (x : β) β ((Fin x β Ξ±) β Prop) β Sort u_1) (P : (Fin 0 β Ξ±) β Prop)
(h_1 : (P : (Fin 0 β Ξ±) β Prop) β motive 0 P) (h_2 : (n : β) β (P : (Fin (n + 1) β Ξ±) β Prop) β motive n.succ P),
(match 0, P with
| 0, P => h_1 P
| n.succ, P => h_2 n P) =
h_1 P
|
Module.Basis.range_extend
|
Mathlib.LinearAlgebra.Basis.VectorSpace
|
β {K : Type u_3} {V : Type u_4} [inst : DivisionRing K] [inst_1 : AddCommGroup V] [inst_2 : Module K V] {s : Set V}
(hs : LinearIndepOn K id s), Set.range β(Module.Basis.extend hs) = hs.extend β―
|
_private.Lean.Meta.Tactic.Grind.AC.Eq.0.Lean.Meta.Grind.AC.withExprs.go.match_1.eq_2
|
Lean.Meta.Tactic.Grind.AC.Eq
|
β (motive : List β β List β β Sort u_1) (x : List β) (h_1 : (x : List β) β motive [] x)
(h_2 : (x : List β) β motive x [])
(h_3 : (idβ : β) β (idsβ : List β) β (idβ : β) β (idsβ : List β) β motive (idβ :: idsβ) (idβ :: idsβ)),
(x = [] β False) β
(match x, [] with
| [], x => h_1 x
| x, [] => h_2 x
| idβ :: idsβ, idβ :: idsβ => h_3 idβ idsβ idβ idsβ) =
h_2 x
|
NonUnitalSubsemiring.prodEquiv
|
Mathlib.RingTheory.NonUnitalSubsemiring.Basic
|
{R : Type u} β
{S : Type v} β
[inst : NonUnitalNonAssocSemiring R] β
[inst_1 : NonUnitalNonAssocSemiring S] β
(s : NonUnitalSubsemiring R) β (t : NonUnitalSubsemiring S) β β₯(s.prod t) β+* β₯s Γ β₯t
|
Std.TreeMap.Raw.contains_iff_mem._simp_1
|
Std.Data.TreeMap.Raw.Lemmas
|
β {Ξ± : Type u} {Ξ² : Type v} {cmp : Ξ± β Ξ± β Ordering} {t : Std.TreeMap.Raw Ξ± Ξ² cmp} {k : Ξ±},
(t.contains k = true) = (k β t)
|
Lean.Elab.Command.InductiveElabStep2
|
Lean.Elab.MutualInductive
|
Type
|
Lean.Meta.Grind.AC.ProofM.State.exprDecls
|
Lean.Meta.Tactic.Grind.AC.Proof
|
Lean.Meta.Grind.AC.ProofM.State β Std.HashMap Lean.Grind.AC.Expr Lean.Expr
|
Lean.Parser.Module.prelude
|
Lean.Parser.Module
|
Lean.Parser.Parser
|
Array.getElem_toList
|
Init.Data.Array.Basic
|
β {Ξ± : Type u} {xs : Array Ξ±} {i : β} (h : i < xs.size), xs.toList[i] = xs[i]
|
Aesop.PatSubstSource.casesOn
|
Aesop.Forward.State
|
{motive : Aesop.PatSubstSource β Sort u} β
(t : Aesop.PatSubstSource) β
((fvarId : Lean.FVarId) β motive (Aesop.PatSubstSource.hyp fvarId)) β motive Aesop.PatSubstSource.target β motive t
|
LieHom.mem_idealRange_iff._simp_1
|
Mathlib.Algebra.Lie.Ideal
|
β {R : Type u} {L : Type v} {L' : Type wβ} [inst : CommRing R] [inst_1 : LieRing L] [inst_2 : LieRing L']
[inst_3 : LieAlgebra R L'] [inst_4 : LieAlgebra R L] (f : L βββ
Rβ L'),
f.IsIdealMorphism β β {y : L'}, (y β f.idealRange) = β x, f x = y
|
MeasureTheory.innerRegular_map_add_left
|
Mathlib.MeasureTheory.Group.Measure
|
β {G : Type u_1} [inst : MeasurableSpace G] [inst_1 : TopologicalSpace G] [BorelSpace G] {ΞΌ : MeasureTheory.Measure G}
[inst_3 : AddGroup G] [IsTopologicalAddGroup G] [ΞΌ.InnerRegular] (g : G),
(MeasureTheory.Measure.map (fun x => g + x) ΞΌ).InnerRegular
|
_private.Mathlib.RingTheory.Support.0.Module.mem_support_iff_of_finite._simp_1_2
|
Mathlib.RingTheory.Support
|
β {R : Type u_1} {M : Type u_2} [inst : CommSemiring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M] (g : M)
(r : R), (r β (R β g).annihilator) = (r β’ g = 0)
|
CategoryTheory.ObjectProperty.strictLimitsOfShape_monotone
|
Mathlib.CategoryTheory.ObjectProperty.LimitsOfShape
|
β {C : Type u_1} [inst : CategoryTheory.Category.{u_2, u_1} C] {P : CategoryTheory.ObjectProperty C} (J : Type u')
[inst_1 : CategoryTheory.Category.{v', u'} J] {Q : CategoryTheory.ObjectProperty C},
P β€ Q β P.strictLimitsOfShape J β€ Q.strictLimitsOfShape J
|
List.eraseIdx_modify_of_eq
|
Init.Data.List.Nat.Modify
|
β {Ξ± : Type u_1} (f : Ξ± β Ξ±) (i : β) (l : List Ξ±), (l.modify i f).eraseIdx i = l.eraseIdx i
|
ULift.ring._proof_3
|
Mathlib.Algebra.Ring.ULift
|
β {R : Type u_2} [inst : Ring R] (n : β) (a : ULift.{u_1, u_2} R),
SubNegMonoid.zsmul (βn.succ) a = SubNegMonoid.zsmul (βn) a + a
|
AEMeasurable.cexp
|
Mathlib.MeasureTheory.Function.SpecialFunctions.Basic
|
β {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} {f : Ξ± β β},
AEMeasurable f ΞΌ β AEMeasurable (fun x => Complex.exp (f x)) ΞΌ
|
Lean.MonadFileMap.noConfusion
|
Lean.Data.Position
|
{m : Type β Type} β {P : Sort u} β {x1 x2 : Lean.MonadFileMap m} β x1 = x2 β Lean.MonadFileMap.noConfusionType P x1 x2
|
Polynomial.aeval.eq_1
|
Mathlib.RingTheory.AdjoinRoot
|
β {R : Type u} {A : Type z} [inst : CommSemiring R] [inst_1 : Semiring A] [inst_2 : Algebra R A] (x : A),
Polynomial.aeval x = Polynomial.evalβAlgHom' (Algebra.ofId R A) x β―
|
TopCat.Presheaf.isSheaf_on_punit_iff_isTerminal
|
Mathlib.Topology.Sheaves.PUnit
|
β {C : Type u} [inst : CategoryTheory.Category.{v, u} C]
(F : TopCat.Presheaf C { carrier := PUnit.{u_1 + 1}, str := instTopologicalSpacePUnit }),
F.IsSheaf β Nonempty (CategoryTheory.Limits.IsTerminal (F.obj (Opposite.op β₯)))
|
CategoryTheory.ShortComplex.homologyMap_smul
|
Mathlib.Algebra.Homology.ShortComplex.Linear
|
β {R : Type u_1} {C : Type u_2} [inst : Semiring R] [inst_1 : CategoryTheory.Category.{u_3, u_2} C]
[inst_2 : CategoryTheory.Preadditive C] [inst_3 : CategoryTheory.Linear R C] {Sβ Sβ : CategoryTheory.ShortComplex C}
(Ο : Sβ βΆ Sβ) (a : R) [inst_4 : Sβ.HasHomology] [inst_5 : Sβ.HasHomology],
CategoryTheory.ShortComplex.homologyMap (a β’ Ο) = a β’ CategoryTheory.ShortComplex.homologyMap Ο
|
Nat.gcd_mul_left_sub_right
|
Init.Data.Nat.Gcd
|
β {m n k : β}, n β€ m * k β m.gcd (m * k - n) = m.gcd n
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.