diff-storyboard / examples /flux /model_inference /FLUX.1-dev-LoRA-Encoder.py
jiaxi2002's picture
Upload folder using huggingface_hub
feb33a0 verified
import torch
from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig
pipe = FluxImagePipeline.from_pretrained(
torch_dtype=torch.bfloat16,
device="cuda",
model_configs=[
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="flux1-dev.safetensors"),
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder/model.safetensors"),
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder_2/"),
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="ae.safetensors"),
ModelConfig(model_id="DiffSynth-Studio/LoRA-Encoder-FLUX.1-Dev", origin_file_pattern="model.safetensors"),
],
)
pipe.enable_lora_magic()
lora = ModelConfig(model_id="VoidOc/flux_animal_forest1", origin_file_pattern="20.safetensors")
pipe.load_lora(pipe.dit, lora, hotload=True) # Use `pipe.clear_lora()` to drop the loaded LoRA.
# Empty prompt can automatically activate LoRA capabilities.
image = pipe(prompt="", seed=0, lora_encoder_inputs=lora)
image.save("image_1.jpg")
image = pipe(prompt="", seed=0)
image.save("image_1_origin.jpg")
# Prompt without trigger words can also activate LoRA capabilities.
image = pipe(prompt="a car", seed=0, lora_encoder_inputs=lora)
image.save("image_2.jpg")
image = pipe(prompt="a car", seed=0,)
image.save("image_2_origin.jpg")
# Adjust the activation intensity through the scale parameter.
image = pipe(prompt="a cat", seed=0, lora_encoder_inputs=lora, lora_encoder_scale=1.0)
image.save("image_3.jpg")
image = pipe(prompt="a cat", seed=0, lora_encoder_inputs=lora, lora_encoder_scale=0.5)
image.save("image_3_scale.jpg")