|
|
import torch |
|
|
from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig |
|
|
|
|
|
|
|
|
pipe = FluxImagePipeline.from_pretrained( |
|
|
torch_dtype=torch.bfloat16, |
|
|
device="cuda", |
|
|
model_configs=[ |
|
|
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="flux1-dev.safetensors"), |
|
|
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder/model.safetensors"), |
|
|
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder_2/"), |
|
|
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="ae.safetensors"), |
|
|
ModelConfig(model_id="DiffSynth-Studio/LoRA-Encoder-FLUX.1-Dev", origin_file_pattern="model.safetensors"), |
|
|
], |
|
|
) |
|
|
pipe.enable_lora_magic() |
|
|
|
|
|
lora = ModelConfig(model_id="VoidOc/flux_animal_forest1", origin_file_pattern="20.safetensors") |
|
|
pipe.load_lora(pipe.dit, lora, hotload=True) |
|
|
|
|
|
|
|
|
image = pipe(prompt="", seed=0, lora_encoder_inputs=lora) |
|
|
image.save("image_1.jpg") |
|
|
|
|
|
image = pipe(prompt="", seed=0) |
|
|
image.save("image_1_origin.jpg") |
|
|
|
|
|
|
|
|
image = pipe(prompt="a car", seed=0, lora_encoder_inputs=lora) |
|
|
image.save("image_2.jpg") |
|
|
|
|
|
image = pipe(prompt="a car", seed=0,) |
|
|
image.save("image_2_origin.jpg") |
|
|
|
|
|
|
|
|
image = pipe(prompt="a cat", seed=0, lora_encoder_inputs=lora, lora_encoder_scale=1.0) |
|
|
image.save("image_3.jpg") |
|
|
|
|
|
image = pipe(prompt="a cat", seed=0, lora_encoder_inputs=lora, lora_encoder_scale=0.5) |
|
|
image.save("image_3_scale.jpg") |
|
|
|