|
|
import torch |
|
|
import random |
|
|
from PIL import Image, ImageDraw, ImageFont |
|
|
from modelscope import dataset_snapshot_download, snapshot_download |
|
|
from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig |
|
|
|
|
|
def visualize_masks(image, masks, mask_prompts, output_path, font_size=35, use_random_colors=False): |
|
|
|
|
|
overlay = Image.new('RGBA', image.size, (0, 0, 0, 0)) |
|
|
|
|
|
colors = [ |
|
|
(165, 238, 173, 80), |
|
|
(76, 102, 221, 80), |
|
|
(221, 160, 77, 80), |
|
|
(204, 93, 71, 80), |
|
|
(145, 187, 149, 80), |
|
|
(134, 141, 172, 80), |
|
|
(157, 137, 109, 80), |
|
|
(153, 104, 95, 80), |
|
|
(165, 238, 173, 80), |
|
|
(76, 102, 221, 80), |
|
|
(221, 160, 77, 80), |
|
|
(204, 93, 71, 80), |
|
|
(145, 187, 149, 80), |
|
|
(134, 141, 172, 80), |
|
|
(157, 137, 109, 80), |
|
|
(153, 104, 95, 80), |
|
|
] |
|
|
|
|
|
if use_random_colors: |
|
|
colors = [(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255), 80) for _ in range(len(masks))] |
|
|
|
|
|
|
|
|
try: |
|
|
font = ImageFont.truetype("wqy-zenhei.ttc", font_size) |
|
|
except IOError: |
|
|
font = ImageFont.load_default(font_size) |
|
|
|
|
|
|
|
|
for mask, mask_prompt, color in zip(masks, mask_prompts, colors): |
|
|
|
|
|
mask_rgba = mask.convert('RGBA') |
|
|
mask_data = mask_rgba.getdata() |
|
|
new_data = [(color if item[:3] == (255, 255, 255) else (0, 0, 0, 0)) for item in mask_data] |
|
|
mask_rgba.putdata(new_data) |
|
|
|
|
|
|
|
|
draw = ImageDraw.Draw(mask_rgba) |
|
|
mask_bbox = mask.getbbox() |
|
|
text_position = (mask_bbox[0] + 10, mask_bbox[1] + 10) |
|
|
draw.text(text_position, mask_prompt, fill=(255, 255, 255, 255), font=font) |
|
|
|
|
|
|
|
|
overlay = Image.alpha_composite(overlay, mask_rgba) |
|
|
|
|
|
|
|
|
result = Image.alpha_composite(image.convert('RGBA'), overlay) |
|
|
|
|
|
|
|
|
result.save(output_path) |
|
|
|
|
|
return result |
|
|
|
|
|
def example(pipe, seeds, example_id, global_prompt, entity_prompts): |
|
|
dataset_snapshot_download(dataset_id="DiffSynth-Studio/examples_in_diffsynth", local_dir="./", allow_file_pattern=f"data/examples/eligen/qwen-image/example_{example_id}/*.png") |
|
|
masks = [Image.open(f"./data/examples/eligen/qwen-image/example_{example_id}/{i}.png").convert('RGB').resize((1024, 1024)) for i in range(len(entity_prompts))] |
|
|
negative_prompt = "网格化,规则的网格,模糊, 低分辨率, 低质量, 变形, 畸形, 错误的解剖学, 变形的手, 变形的身体, 变形的脸, 变形的头发, 变形的眼睛, 变形的嘴巴" |
|
|
for seed in seeds: |
|
|
|
|
|
image = pipe( |
|
|
prompt=global_prompt, |
|
|
cfg_scale=4.0, |
|
|
negative_prompt=negative_prompt, |
|
|
num_inference_steps=40, |
|
|
seed=seed, |
|
|
height=1024, |
|
|
width=1024, |
|
|
eligen_entity_prompts=entity_prompts, |
|
|
eligen_entity_masks=masks, |
|
|
) |
|
|
image.save(f"eligen_example_{example_id}_{seed}.png") |
|
|
visualize_masks(image, masks, entity_prompts, f"eligen_example_{example_id}_mask_{seed}.png") |
|
|
|
|
|
|
|
|
pipe = QwenImagePipeline.from_pretrained( |
|
|
torch_dtype=torch.bfloat16, |
|
|
device="cuda", |
|
|
model_configs=[ |
|
|
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"), |
|
|
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"), |
|
|
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"), |
|
|
], |
|
|
tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"), |
|
|
) |
|
|
snapshot_download("DiffSynth-Studio/Qwen-Image-EliGen-V2", local_dir="models/DiffSynth-Studio/Qwen-Image-EliGen-V2", allow_file_pattern="model.safetensors") |
|
|
pipe.load_lora(pipe.dit, "models/DiffSynth-Studio/Qwen-Image-EliGen-V2/model.safetensors") |
|
|
|
|
|
seeds = [0] |
|
|
|
|
|
global_prompt = "写实摄影风格. A beautiful asia woman wearing white dress, she is holding a mirror with her right arm, with a beach background." |
|
|
entity_prompts = ["A beautiful woman", "mirror", "necklace", "glasses", "earring", "white dress", "jewelry headpiece"] |
|
|
example(pipe, seeds, 7, global_prompt, entity_prompts) |
|
|
|
|
|
global_prompt = "写实摄影风格, 细节丰富。街头一位漂亮的女孩,穿着衬衫和短裤,手持写有“实体控制”的标牌,背景是繁忙的城市街道,阳光明媚,行人匆匆。" |
|
|
entity_prompts = ["一个漂亮的女孩", "标牌 '实体控制'", "短裤", "衬衫"] |
|
|
example(pipe, seeds, 4, global_prompt, entity_prompts) |
|
|
|