teacher-evaluation-api / predictor.py
Wind-xixi's picture
Update predictor.py
bdb326c verified
raw
history blame
18.8 kB
import json
import re
import os
import hashlib
import onnxruntime as ort
import numpy as np
from typing import List, Dict, Set, Optional
score_map = {'A': 5, 'B': 4, 'C': 3, 'D': 2, 'E': 1}
class SentenceExtractor:
def __init__(
self,
eval_keywords_path: str,
model_path: str = "distilled_model.onnx",
*,
# 分句与聚合相关的可配置开关
merge_leading_punct: bool = True,
min_sentence_char_len: int = 6,
aggregation_mode: str = "max", # 可选:"max" | "mean"
# 加减号阈值(>0 / <0 为原逻辑;建议适度提高到 2/-2)
word_score_plus_threshold: int = 1,
word_score_minus_threshold: int = -1,
):
# 统一以文件所在目录为根,避免工作目录不同导致找不到资源
self.base_dir = os.path.dirname(os.path.abspath(__file__))
self.tokenizer_dir = self.base_dir
# 允许传相对路径:自动转绝对
if not os.path.isabs(model_path):
model_path = os.path.join(self.base_dir, model_path)
if not os.path.isabs(eval_keywords_path):
eval_keywords_path = os.path.join(self.base_dir, eval_keywords_path)
self.eval_keywords = self._load_eval_keywords(eval_keywords_path)
self.all_keywords = self._extract_all_keywords()
self.ort_session = None
self.input_name = None
self.output_name = None
# 配置项
self.merge_leading_punct = merge_leading_punct
self.min_sentence_char_len = max(0, int(min_sentence_char_len))
self.aggregation_mode = aggregation_mode.lower().strip()
if self.aggregation_mode not in {"max", "mean"}:
self.aggregation_mode = "max"
self.word_score_plus_threshold = int(word_score_plus_threshold)
self.word_score_minus_threshold = int(word_score_minus_threshold)
self.providers: Optional[List[str]] = None
self.tokenizer_loaded: bool = False
self.last_tokenizer_error: Optional[str] = None
try:
# 强制使用 CPU provider,避免某些环境下选择到不可用的 GPU provider 导致加载失败
self.ort_session = ort.InferenceSession(model_path, providers=["CPUExecutionProvider"])
self.input_name = self.ort_session.get_inputs()[0].name
self.output_name = self.ort_session.get_outputs()[0].name
try:
self.providers = self.ort_session.get_providers()
except Exception:
self.providers = None
print("ONNX 模型加载成功")
self.model_loaded: bool = True
except Exception as e:
print(f"ONNX 模型加载失败: {e}")
self.ort_session = None
self.model_loaded = False
# 记录模型文件信息,便于排查“用错模型”问题
try:
self.model_path_abs: Optional[str] = os.path.abspath(model_path)
self.model_sha256: Optional[str] = None
if os.path.exists(model_path):
sha = hashlib.sha256()
with open(model_path, 'rb') as f:
for chunk in iter(lambda: f.read(8192), b''):
sha.update(chunk)
self.model_sha256 = sha.hexdigest()
except Exception:
self.model_path_abs = None
self.model_sha256 = None
def _preprocess_text(self, text: str) -> np.ndarray:
try:
from transformers import AutoTokenizer
# 1) 优先从与脚本同目录加载本地 tokenizer(部署一起带上 tokenizer.json 等文件)
try:
tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_dir, local_files_only=True)
except Exception:
try:
tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_dir)
except Exception:
# 2) 兜底:在线模型(需要外网)
tokenizer = AutoTokenizer.from_pretrained("uer/chinese_roberta_L-4_H-256")
inputs = tokenizer(
text,
truncation=True,
padding=True,
max_length=512,
return_tensors='np'
)
self.tokenizer_loaded = True
self.last_tokenizer_error = None
return inputs
except Exception as e:
self.tokenizer_loaded = False
self.last_tokenizer_error = str(e)
# 继续抛出异常,由上层捕获并回退,同时记录原因
raise
def _predict_grade_with_model(self, text: str) -> Dict[str, any]:
try:
if not self.ort_session:
word_score = self._calculate_word_scores(text)["total_score"]
grade = "C"
if word_score > 1:
grade = "B"
if word_score < -1:
grade = "D"
return {"grade": grade, "source": "rule", "word_score_total": word_score}
inputs = self._preprocess_text(text)
model_input_names = [i.name for i in self.ort_session.get_inputs()]
input_data = {}
if isinstance(inputs, dict) and 'input_ids' in inputs:
token_type = inputs.get('token_type_ids')
attn = inputs.get('attention_mask')
ids = inputs['input_ids']
for name in model_input_names:
lowered = name.lower()
if 'mask' in lowered:
input_data[name] = attn if attn is not None else np.ones_like(ids)
elif 'token_type' in lowered or 'segment' in lowered:
if token_type is None:
token_type = np.zeros_like(ids)
input_data[name] = token_type
elif 'input_ids' in lowered or 'input' in lowered or 'ids' in lowered:
input_data[name] = ids
else:
input_data[name] = np.zeros_like(ids)
else:
target_input = self.input_name or (model_input_names[0] if model_input_names else 'input')
input_data = {target_input: inputs}
outputs = self.ort_session.run([self.output_name], input_data)
predictions = outputs[0]
grade_index = int(np.argmax(predictions))
grades = ['A', 'B', 'C', 'D', 'E']
probs = self._softmax(predictions)[0].tolist()
return {
"grade": grades[grade_index],
"source": "model",
"prob": float(probs[grade_index]),
"probs": probs,
"logits": predictions[0].tolist(),
}
except Exception as e:
print(f"模型预测出错: {e}")
word_score = self._calculate_word_scores(text)["total_score"]
grade = "C"
if word_score > 1:
grade = "B"
if word_score < -1:
grade = "D"
return {
"grade": grade,
"source": "rule",
"word_score_total": word_score,
"reason": str(e),
"tokenizer_loaded": self.tokenizer_loaded,
"last_tokenizer_error": self.last_tokenizer_error,
}
@staticmethod
def _softmax(x: np.ndarray) -> np.ndarray:
x = x - np.max(x, axis=-1, keepdims=True)
exp_x = np.exp(x)
return exp_x / np.sum(exp_x, axis=-1, keepdims=True)
def _load_eval_keywords(self, file_path: str) -> Dict[str, Dict[str, List[str]]]:
try:
with open(file_path, 'r', encoding='utf-8') as f:
return json.load(f)
except Exception as e:
print(f"加载评估关键词库失败: {e}")
return {}
def _extract_all_keywords(self) -> Set[str]:
keywords_set = set()
for category, types in self.eval_keywords.items():
for _, keywords in types.items():
keywords_set.update(keywords)
return keywords_set
def _split_into_sentences(self, text: str) -> List[str]:
if not text:
return []
# 先按强终止符切分
normalized = re.sub(r'([。!?.!?])', r'\1\n', text)
normalized = re.sub(r'[;;]\s*', ';\n', normalized)
candidates = [s.strip() for s in re.split(r'[\r\n]+', normalized) if s.strip()]
# 长句再按逗号细分
rough_sentences: List[str] = []
for s in candidates:
if len(s) > 80 and not re.search(r'[。!?.!?;;]', s):
parts = re.split(r'[,,]', s)
rough_sentences.extend([p.strip() for p in parts if p.strip()])
else:
rough_sentences.append(s)
# 合并以标点开头的碎片,并过滤超短句
sentences: List[str] = []
leading_punct_pattern = r'^[,,。;;::、\s]+'
for s in rough_sentences:
if self.merge_leading_punct and re.match(leading_punct_pattern, s):
# 去掉前缀标点后并入上一句
cleaned = re.sub(leading_punct_pattern, '', s)
if sentences:
sentences[-1] = f"{sentences[-1]}{cleaned}"
else:
if cleaned:
sentences.append(cleaned)
continue
# 过滤极短句(去标点长度)
plain = re.sub(r'[,,。;;::、!!??\s]', '', s)
if self.min_sentence_char_len > 0 and len(plain) < self.min_sentence_char_len:
# 不直接丢弃:若有上一句,合并
if sentences:
sentences[-1] = f"{sentences[-1]}{s}"
else:
sentences.append(s)
continue
sentences.append(s)
return [s.strip() for s in sentences if s and s.strip()]
def _fuzzy_match_keyword(self, sentence: str, keyword: str) -> bool:
"""更严格的中文关键词匹配。
- 长度 < 2 的关键词(如“好”)仅按分词后的精确词匹配,避免所有句子都命中。
- 其余关键词采用去标点后的包含匹配。
"""
if not keyword:
return False
# 统一去空白
sentence = sentence.strip()
keyword = keyword.strip()
# 对极短关键词走分词精确匹配,避免过拟合
if len(keyword) < 2:
try:
import jieba # 已在 requirements 中
tokens = set(jieba.lcut(sentence))
return keyword in tokens
except Exception:
# 兜底:对极短词不做模糊匹配
return False
# 一般关键词:去标点后做包含匹配
import string
trans = str.maketrans('', '', string.punctuation)
sentence_clean = sentence.translate(trans)
keyword_clean = keyword.translate(trans)
return keyword_clean in sentence_clean
def _is_negated_positive(self, text: str, keyword: str) -> bool:
"""检测积极关键词是否被否定词修饰,例如:
- 没有/无/不/非/未/并不/毫无 + 关键词
- 对以“有”开头的积极词(如“有创新性”),也匹配“没有/无/不/未/并不/毫无 + 去掉‘有’后的部分(如“创新性”)”
- 缺乏/不足/欠缺/缺少/不具备 + 关键词 或 关键词去“有”后的部分
"""
if not keyword:
return False
sentence = text.strip()
neg_prefixes = [
"没有", "没", "无", "不", "非", "未", "并不", "并没有", "并无", "毫无"
]
lack_prefixes = [
"缺乏", "不足", "欠缺", "缺少", "不具备", "不够"
]
# 构建安全的正则片段
import re
def any_prefix(prefixes: List[str]) -> str:
return "(?:" + "|".join(re.escape(p) for p in prefixes) + ")"
patterns: List[str] = []
# 直接:否定前缀 + 关键词
patterns.append(rf"{any_prefix(neg_prefixes)}\s*{re.escape(keyword)}")
# 直接:缺乏类前缀 + 关键词
patterns.append(rf"{any_prefix(lack_prefixes)}\s*{re.escape(keyword)}")
# 若积极词以“有”开头,额外匹配去掉“有”的尾部(例如 ‘有创新性’ → ‘创新性’)
if keyword.startswith("有") and len(keyword) > 1:
tail = keyword[1:]
patterns.append(rf"{any_prefix(neg_prefixes)}\s*{re.escape(tail)}")
patterns.append(rf"{any_prefix(lack_prefixes)}\s*{re.escape(tail)}")
for pat in patterns:
if re.search(pat, sentence):
return True
return False
def _extract_relevant_sentences(self, text: str) -> List[str]:
sentences = self._split_into_sentences(text)
relevant_sentences = []
for sentence in sentences:
for category in ["student_performance", "content_quality", "cross_scene"]:
if category not in self.eval_keywords:
continue
for sentiment in ["positive", "negative", "nature", "suggestion"]:
if sentiment not in self.eval_keywords[category]:
continue
for keyword in self.eval_keywords[category][sentiment]:
if self._fuzzy_match_keyword(sentence, keyword):
if sentence not in relevant_sentences:
relevant_sentences.append(sentence)
break
else:
continue
break
else:
continue
break
return relevant_sentences
def _calculate_word_scores(self, text: str) -> Dict[str, int]:
positive_count = 0
negative_count = 0
neutral_count = 0
total_score = 0
for category in ["student_performance", "content_quality", "cross_scene"]:
if category not in self.eval_keywords:
continue
for keyword in self.eval_keywords[category].get("positive", []):
if self._fuzzy_match_keyword(text, keyword):
# 遇到被否定的积极词(如“没有创新性”含“有创新性”),按消极计分
if self._is_negated_positive(text, keyword):
negative_count += 1
total_score -= 1
else:
positive_count += 1
total_score += 1
for keyword in self.eval_keywords[category].get("negative", []):
if self._fuzzy_match_keyword(text, keyword):
negative_count += 1
total_score -= 1
for keyword in self.eval_keywords[category].get("nature", []):
if self._fuzzy_match_keyword(text, keyword):
neutral_count += 1
return {
"positive_count": positive_count,
"negative_count": negative_count,
"neutral_count": neutral_count,
"total_score": total_score,
}
def extract(self, text: str) -> Dict[str, any]:
if not text:
return {
"comprehensive_grade": "C",
"positive_word_count": 0,
"negative_word_count": 0,
"neutral_word_count": 0,
"scored_sentences": [],
"count": 0,
}
relevant_sentences = self._extract_relevant_sentences(text)
scored_sentences = []
total_sentence_score = 0
for sentence in relevant_sentences:
info = self._predict_grade_with_model(sentence)
grade = info.get("grade", "C")
score = score_map.get(grade, 3)
# 附带调试信息
scored_sentences.append({
"sentence": sentence,
"grade": grade,
"source": info.get("source", "unknown"),
"prob": info.get("prob"),
"word_score_total": info.get("word_score_total"),
})
total_sentence_score += score
comprehensive_grade = "C"
if relevant_sentences:
reverse_map = {5: 'A', 4: 'B', 3: 'C', 2: 'D', 1: 'E'}
if self.aggregation_mode == "max":
# 取最高等级(更鲁棒,避免短碎句拉低均值)
max_score = max(score_map.get(item["grade"], 3) for item in scored_sentences)
comprehensive_grade = reverse_map.get(max_score, "C")
else:
avg_score = total_sentence_score / len(relevant_sentences)
rounded_score = int(round(avg_score))
comprehensive_grade = reverse_map.get(rounded_score, "C")
word_scores = self._calculate_word_scores(text)
final_grade = comprehensive_grade
if word_scores["total_score"] > self.word_score_plus_threshold:
final_grade = comprehensive_grade + "+"
elif word_scores["total_score"] < self.word_score_minus_threshold:
final_grade = comprehensive_grade + "-"
return {
"comprehensive_grade": final_grade,
"positive_word_count": word_scores["positive_count"],
"negative_word_count": word_scores["negative_count"],
"neutral_word_count": word_scores["neutral_count"],
"scored_sentences": scored_sentences,
"count": len(relevant_sentences),
# 调试字段
"debug": {
"model_loaded": getattr(self, "model_loaded", False),
"model_path_abs": getattr(self, "model_path_abs", None),
"model_sha256": getattr(self, "model_sha256", None),
"providers": self.providers,
"tokenizer_loaded": self.tokenizer_loaded,
"last_tokenizer_error": self.last_tokenizer_error,
"aggregation_mode": self.aggregation_mode,
"min_sentence_char_len": self.min_sentence_char_len,
"merge_leading_punct": self.merge_leading_punct,
"word_score_plus_threshold": self.word_score_plus_threshold,
"word_score_minus_threshold": self.word_score_minus_threshold,
"relevant_sentences": relevant_sentences,
"word_score_total": word_scores["total_score"],
}
}