Spaces:
Sleeping
Sleeping
| from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments | |
| from datasets import load_dataset | |
| import torch | |
| # Load the pre-trained GPT-2 model and tokenizer | |
| model_name = "gpt2" | |
| tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
| model = GPT2LMHeadModel.from_pretrained(model_name) | |
| # Load your custom dataset (replace 'path_to_dataset' with your dataset path) | |
| # Dataset format should be a text file with one example per line. | |
| dataset = load_dataset("text", data_files={"train": "path_to_train.txt", "test": "path_to_test.txt"}) | |
| # Tokenize the dataset | |
| def tokenize_function(examples): | |
| return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128) | |
| tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=["text"]) | |
| # Set up data collator (for padding batch sizes) | |
| from transformers import DataCollatorForLanguageModeling | |
| data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) | |
| # Define training arguments | |
| training_args = TrainingArguments( | |
| output_dir="./results", | |
| overwrite_output_dir=True, | |
| num_train_epochs=3, | |
| per_device_train_batch_size=8, | |
| save_steps=500, | |
| save_total_limit=2, | |
| prediction_loss_only=True, | |
| logging_dir="./logs", | |
| learning_rate=5e-5, | |
| warmup_steps=500, | |
| weight_decay=0.01, | |
| fp16=torch.cuda.is_available(), | |
| evaluation_strategy="steps", | |
| eval_steps=500 | |
| ) | |
| # Initialize Trainer | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=tokenized_datasets["train"], | |
| eval_dataset=tokenized_datasets["test"], | |
| tokenizer=tokenizer, | |
| data_collator=data_collator, | |
| ) | |
| # Fine-tune the model | |
| trainer.train() | |
| # Save the fine-tuned model | |
| trainer.save_model("./fine_tuned_gpt2") | |
| tokenizer.save_pretrained("./fine_tuned_gpt2") | |
| print("Model fine-tuned and saved successfully!") | |