Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,7 @@ import librosa
|
|
| 4 |
import numpy as np
|
| 5 |
|
| 6 |
# ---------------------------------------------------------
|
| 7 |
-
# 1. AUDIO-MODELL LADEN
|
| 8 |
# ---------------------------------------------------------
|
| 9 |
|
| 10 |
classifier = pipeline(
|
|
@@ -32,6 +32,8 @@ ENERGY_HOP_MS = 10 # Schrittweite (ms)
|
|
| 32 |
ENERGY_QUANTILE = 0.80 # Lautheitsschwelle (oberes 20%-Quantil)
|
| 33 |
MIN_EVENT_DURATION = 0.25 # min. Dauer eines lauten Events (Sek.)
|
| 34 |
|
|
|
|
|
|
|
| 35 |
# ---------------------------------------------------------
|
| 36 |
# 3. FUNKTION: LAUTE EVENTS FINDEN
|
| 37 |
# ---------------------------------------------------------
|
|
@@ -82,35 +84,64 @@ def find_loud_events(y, sr):
|
|
| 82 |
return events
|
| 83 |
|
| 84 |
# ---------------------------------------------------------
|
| 85 |
-
# 4.
|
|
|
|
|
|
|
| 86 |
# ---------------------------------------------------------
|
| 87 |
|
| 88 |
-
def
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
-
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
candidate_labels=CANDIDATE_LABELS,
|
| 100 |
multi_label=True,
|
|
|
|
| 101 |
)
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
return
|
| 108 |
|
| 109 |
# ---------------------------------------------------------
|
| 110 |
-
# 5. HAUPT-ANALYSEFUNKTION
|
| 111 |
# ---------------------------------------------------------
|
| 112 |
|
| 113 |
-
def analyze_barking(audio_path, max_pause_sec, bark_prob_threshold):
|
| 114 |
# 0. Upload prüfen
|
| 115 |
if audio_path is None or audio_path == "":
|
| 116 |
return "Es wurde keine Audiodatei hochgeladen."
|
|
@@ -130,26 +161,29 @@ def analyze_barking(audio_path, max_pause_sec, bark_prob_threshold):
|
|
| 130 |
if not loud_events:
|
| 131 |
return "Keine lauten Ereignisse gefunden – vermutlich kein Bellen."
|
| 132 |
|
| 133 |
-
# 3.
|
| 134 |
-
bark_windows =
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
if score >= bark_prob_threshold:
|
| 143 |
-
bark_windows.append((s, e, score))
|
| 144 |
|
| 145 |
if not bark_windows:
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
-
# 4.
|
| 152 |
-
bark_windows.sort(key=lambda x: x[0])
|
| 153 |
|
| 154 |
episodes = []
|
| 155 |
cur_start, cur_end, _ = bark_windows[0]
|
|
@@ -168,6 +202,8 @@ def analyze_barking(audio_path, max_pause_sec, bark_prob_threshold):
|
|
| 168 |
total_seconds = sum(e2 - e1 for (e1, e2) in episodes)
|
| 169 |
|
| 170 |
lines = []
|
|
|
|
|
|
|
| 171 |
lines.append(f"**A: Anzahl der Bell-Ereignisse:** {count}")
|
| 172 |
lines.append(f"**B: Gesamtdauer des Bellens:** {total_seconds:.1f} Sekunden\n")
|
| 173 |
lines.append(
|
|
@@ -182,7 +218,7 @@ def analyze_barking(audio_path, max_pause_sec, bark_prob_threshold):
|
|
| 182 |
return "\n".join(lines)
|
| 183 |
|
| 184 |
# ---------------------------------------------------------
|
| 185 |
-
# 6. GRADIO UI – MIT SLIDERN
|
| 186 |
# ---------------------------------------------------------
|
| 187 |
|
| 188 |
audio_input = gr.Audio(type="filepath", label="Audio hochladen (.wav, .mp3)")
|
|
@@ -196,23 +232,29 @@ pause_slider = gr.Slider(
|
|
| 196 |
)
|
| 197 |
|
| 198 |
threshold_slider = gr.Slider(
|
| 199 |
-
minimum=0.
|
| 200 |
maximum=0.9,
|
| 201 |
value=0.35,
|
| 202 |
-
step=0.
|
| 203 |
label="Schwellwert für 'dog barking' (0–1)",
|
| 204 |
)
|
| 205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
demo = gr.Interface(
|
| 207 |
fn=analyze_barking,
|
| 208 |
-
inputs=[audio_input, pause_slider, threshold_slider],
|
| 209 |
outputs=gr.Markdown(),
|
| 210 |
-
title="Barking Episode Analyzer (mit Parametern)",
|
| 211 |
description=(
|
| 212 |
"Erkennt Hundebellen in Aufnahmen.\n\n"
|
| 213 |
-
"
|
| 214 |
-
"-
|
| 215 |
-
"- ab
|
|
|
|
| 216 |
),
|
| 217 |
)
|
| 218 |
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
|
| 6 |
# ---------------------------------------------------------
|
| 7 |
+
# 1. AUDIO-MODELL LADEN (für genaue Erkennung)
|
| 8 |
# ---------------------------------------------------------
|
| 9 |
|
| 10 |
classifier = pipeline(
|
|
|
|
| 32 |
ENERGY_QUANTILE = 0.80 # Lautheitsschwelle (oberes 20%-Quantil)
|
| 33 |
MIN_EVENT_DURATION = 0.25 # min. Dauer eines lauten Events (Sek.)
|
| 34 |
|
| 35 |
+
MIN_SEGMENT_FOR_CLAP = 0.15 # minimale Segmentlänge, damit CLAP Sinn macht (Sek.)
|
| 36 |
+
|
| 37 |
# ---------------------------------------------------------
|
| 38 |
# 3. FUNKTION: LAUTE EVENTS FINDEN
|
| 39 |
# ---------------------------------------------------------
|
|
|
|
| 84 |
return events
|
| 85 |
|
| 86 |
# ---------------------------------------------------------
|
| 87 |
+
# 4. BELL-SEGMENTE ERKENNEN
|
| 88 |
+
# - entweder „fast mode“ (nur Energie)
|
| 89 |
+
# - oder CLAP-basiert, aber gebatcht
|
| 90 |
# ---------------------------------------------------------
|
| 91 |
|
| 92 |
+
def detect_bark_windows(y, sr, loud_events, bark_prob_threshold, use_clap):
|
| 93 |
+
"""
|
| 94 |
+
Gibt eine Liste von (start_s, end_s) zurück, die als Bellen gewertet werden.
|
| 95 |
+
Wenn use_clap=False: jedes laute Event = Bellen (reine Lautstärke-Logik).
|
| 96 |
+
Wenn use_clap=True: CLAP bewertet die Events.
|
| 97 |
+
"""
|
| 98 |
+
if not use_clap:
|
| 99 |
+
# Fast Mode: alles, was laut ist, wird als Bellen gezählt
|
| 100 |
+
return [(s, e, 1.0) for (s, e) in loud_events]
|
| 101 |
|
| 102 |
+
# CLAP-Mode: wir batchen die Events für die Pipeline
|
| 103 |
+
segments = []
|
| 104 |
+
meta = [] # (start_s, end_s) zu jedem Segment
|
| 105 |
|
| 106 |
+
for (s, e) in loud_events:
|
| 107 |
+
if e - s < MIN_SEGMENT_FOR_CLAP:
|
| 108 |
+
continue
|
| 109 |
+
start_idx = int(s * sr)
|
| 110 |
+
end_idx = int(e * sr)
|
| 111 |
+
seg = y[start_idx:end_idx]
|
| 112 |
+
if len(seg) == 0:
|
| 113 |
+
continue
|
| 114 |
+
segments.append(seg)
|
| 115 |
+
meta.append((s, e))
|
| 116 |
|
| 117 |
+
if not segments:
|
| 118 |
+
return []
|
| 119 |
+
|
| 120 |
+
# Batch-Aufruf der Pipeline (deutlich schneller als Einzel-Aufrufe)
|
| 121 |
+
results_list = classifier(
|
| 122 |
+
segments,
|
| 123 |
candidate_labels=CANDIDATE_LABELS,
|
| 124 |
multi_label=True,
|
| 125 |
+
batch_size=4,
|
| 126 |
)
|
| 127 |
|
| 128 |
+
bark_windows = []
|
| 129 |
+
for (s, e), results in zip(meta, results_list):
|
| 130 |
+
bark_score = 0.0
|
| 131 |
+
for r in results:
|
| 132 |
+
if r["label"].lower() == "dog barking":
|
| 133 |
+
bark_score = float(r["score"])
|
| 134 |
+
break
|
| 135 |
+
if bark_score >= bark_prob_threshold:
|
| 136 |
+
bark_windows.append((s, e, bark_score))
|
| 137 |
|
| 138 |
+
return bark_windows
|
| 139 |
|
| 140 |
# ---------------------------------------------------------
|
| 141 |
+
# 5. HAUPT-ANALYSEFUNKTION
|
| 142 |
# ---------------------------------------------------------
|
| 143 |
|
| 144 |
+
def analyze_barking(audio_path, max_pause_sec, bark_prob_threshold, fast_mode):
|
| 145 |
# 0. Upload prüfen
|
| 146 |
if audio_path is None or audio_path == "":
|
| 147 |
return "Es wurde keine Audiodatei hochgeladen."
|
|
|
|
| 161 |
if not loud_events:
|
| 162 |
return "Keine lauten Ereignisse gefunden – vermutlich kein Bellen."
|
| 163 |
|
| 164 |
+
# 3. Bellen-Segmente finden
|
| 165 |
+
bark_windows = detect_bark_windows(
|
| 166 |
+
y,
|
| 167 |
+
sr,
|
| 168 |
+
loud_events,
|
| 169 |
+
bark_prob_threshold,
|
| 170 |
+
use_clap=not fast_mode
|
| 171 |
+
)
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
if not bark_windows:
|
| 174 |
+
if fast_mode:
|
| 175 |
+
return (
|
| 176 |
+
"Fast Mode (ohne KI): keine ausreichend lauten Ereignisse, "
|
| 177 |
+
"die als Bellen interpretiert wurden."
|
| 178 |
+
)
|
| 179 |
+
else:
|
| 180 |
+
return (
|
| 181 |
+
"Es wurde kein Hundebellen mit ausreichend hoher Sicherheit erkannt.\n\n"
|
| 182 |
+
f"(Schwellwert für 'dog barking' = {bark_prob_threshold:.2f})"
|
| 183 |
+
)
|
| 184 |
|
| 185 |
+
# 4. Bell-Segmente zu Episoden zusammenfassen
|
| 186 |
+
bark_windows.sort(key=lambda x: x[0]) # nach Startzeit
|
| 187 |
|
| 188 |
episodes = []
|
| 189 |
cur_start, cur_end, _ = bark_windows[0]
|
|
|
|
| 202 |
total_seconds = sum(e2 - e1 for (e1, e2) in episodes)
|
| 203 |
|
| 204 |
lines = []
|
| 205 |
+
mode_text = "Fast Mode (nur Energie)" if fast_mode else "CLAP-KI-Modus"
|
| 206 |
+
lines.append(f"**Modus:** {mode_text}")
|
| 207 |
lines.append(f"**A: Anzahl der Bell-Ereignisse:** {count}")
|
| 208 |
lines.append(f"**B: Gesamtdauer des Bellens:** {total_seconds:.1f} Sekunden\n")
|
| 209 |
lines.append(
|
|
|
|
| 218 |
return "\n".join(lines)
|
| 219 |
|
| 220 |
# ---------------------------------------------------------
|
| 221 |
+
# 6. GRADIO UI – MIT SLIDERN & FAST-MODE
|
| 222 |
# ---------------------------------------------------------
|
| 223 |
|
| 224 |
audio_input = gr.Audio(type="filepath", label="Audio hochladen (.wav, .mp3)")
|
|
|
|
| 232 |
)
|
| 233 |
|
| 234 |
threshold_slider = gr.Slider(
|
| 235 |
+
minimum=0.01,
|
| 236 |
maximum=0.9,
|
| 237 |
value=0.35,
|
| 238 |
+
step=0.01,
|
| 239 |
label="Schwellwert für 'dog barking' (0–1)",
|
| 240 |
)
|
| 241 |
|
| 242 |
+
fast_checkbox = gr.Checkbox(
|
| 243 |
+
value=False,
|
| 244 |
+
label="Fast Mode (nur Lautstärke, ohne KI-Modell – sehr schnell, aber ungenauer)",
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
demo = gr.Interface(
|
| 248 |
fn=analyze_barking,
|
| 249 |
+
inputs=[audio_input, pause_slider, threshold_slider, fast_checkbox],
|
| 250 |
outputs=gr.Markdown(),
|
| 251 |
+
title="Barking Episode Analyzer (mit Parametern & Fast Mode)",
|
| 252 |
description=(
|
| 253 |
"Erkennt Hundebellen in Aufnahmen.\n\n"
|
| 254 |
+
"Optionen:\n"
|
| 255 |
+
"- **Maximale Pause**: ab welcher Pause ein neues Bell-Ereignis gezählt wird.\n"
|
| 256 |
+
"- **Schwellwert**: ab welcher Wahrscheinlichkeit 'dog barking' gezählt wird.\n"
|
| 257 |
+
"- **Fast Mode**: nur Lautstärke-Analyse (schnell), ohne 'dog barking'-Modell."
|
| 258 |
),
|
| 259 |
)
|
| 260 |
|