Spaces:
Running
Running
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import spaces | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model = AutoModelForCausalLM.from_pretrained( | |
| "Qwen/Qwen2-0.5B-Instruct", | |
| torch_dtype="auto", | |
| device_map="auto" | |
| ).to(device) | |
| tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct") | |
| def chatbot(user_input, history): | |
| system_message = {"role": "system", "content": "You are a helpful assistant."} | |
| messages = history + [{"role": "user", "content": user_input}] | |
| if len(history) == 0: | |
| messages.insert(0, system_message) | |
| text = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True | |
| ) | |
| model_inputs = tokenizer([text], return_tensors="pt").to(device) | |
| attention_mask = torch.ones(model_inputs.input_ids.shape, device=device) | |
| generated_ids = model.generate( | |
| model_inputs.input_ids, | |
| attention_mask=attention_mask, | |
| max_new_tokens=512 | |
| ) | |
| generated_ids = [ | |
| output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
| ] | |
| response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| history.append({"role": "user", "content": user_input}) | |
| history.append({"role": "assistant", "content": response}) | |
| gradio_history = [[msg["role"], msg["content"]] for msg in history] | |
| return gradio_history, history | |
| with gr.Blocks() as demo: | |
| chatbot_interface = gr.Chatbot() | |
| state = gr.State([]) | |
| with gr.Row(): | |
| txt = gr.Textbox(show_label=False, placeholder="Ask anything") | |
| txt.submit(chatbot, [txt, state], [chatbot_interface, state]) | |
| demo.launch() | |