btp-api / app.py
rahul-shrivastav's picture
Update app.py
256a34a verified
raw
history blame
1.27 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import torch
MODEL_NAME = "rahul-shrivastav/BTP-model"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16,
device_map="auto"
)
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
generation_config = GenerationConfig(
do_sample=True,
top_k=50,
temperature=0.7,
max_new_tokens=200,
pad_token_id=tokenizer.eos_token_id
)
outputs = model.generate(**inputs, generation_config=generation_config)
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return {"response": text}
# API mode only — no UI
demo = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(),
outputs="json",
allow_flagging="never"
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0", # Needed for Spaces to accept incoming requests
server_port=7860
# enable_api=True, # allows /gradio_api calls
# allow_flagging="never", # no flag button in UI
# share=True # optional, for public link
)