File size: 16,300 Bytes
ea7b9be
cfae69a
cd458ad
 
 
23ba503
cfae69a
 
cd458ad
 
cfae69a
cd458ad
cfae69a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6743c3d
cfae69a
 
 
 
cd458ad
 
cfae69a
cd458ad
cfae69a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7373e67
cfae69a
 
0780c88
cfae69a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7373e67
cfae69a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd458ad
 
 
cfae69a
7373e67
cfae69a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7373e67
 
cfae69a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7373e67
0780c88
cd458ad
 
cfae69a
 
 
 
cd458ad
cfae69a
cd458ad
 
 
 
 
0780c88
cd458ad
cfae69a
 
 
 
0780c88
cfae69a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd458ad
cfae69a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd458ad
7373e67
cfae69a
7373e67
cfae69a
 
7373e67
cfae69a
 
 
 
6743c3d
0780c88
 
 
cfae69a
 
0780c88
cfae69a
6743c3d
cfae69a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6743c3d
cfae69a
 
 
 
 
cd458ad
23ba503
7373e67
23ba503
 
 
cfae69a
 
23ba503
cfae69a
23ba503
cd458ad
cfae69a
 
 
 
 
 
 
cd458ad
cfae69a
 
 
cd458ad
cfae69a
 
 
 
 
 
 
 
 
 
cd458ad
 
 
cfae69a
 
 
 
 
 
23ba503
 
cfae69a
 
23ba503
cfae69a
 
 
 
 
23ba503
cfae69a
 
 
 
 
 
23ba503
cfae69a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23ba503
cfae69a
3840bbb
 
cfae69a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import pandas as pd
import os
import re
from filelock import FileLock
import torch
import numpy as np

# -----------------------------
# Load Models with Error Handling
# -----------------------------
try:
    # English model
    english_model = pipeline(
        "sentiment-analysis",
        model="siebert/sentiment-roberta-large-english",
        tokenizer="siebert/sentiment-roberta-large-english"
    )
    
    # Urdu model
    urdu_model = pipeline(
        "sentiment-analysis",
        model="tahamueed23/fine_tuned_cardiffnlp_urdu_and_roman-urdu"
    )
    
    # Roman Urdu model
    roman_urdu_model = pipeline(
        "sentiment-analysis",
        model="tahamueed23/urdu-roman-urdu-sentiment-cardiffnlp"
    )
    
    # Language detection model
    lang_detector = pipeline(
        "text-classification",
        model="papluca/xlm-roberta-base-language-detection"
    )
    
except Exception as e:
    print(f"Error loading models: {e}")
    raise

# -----------------------------
# Enhanced Language Detection
# -----------------------------
# Core Roman Urdu keywords (expanded list)
roman_urdu_core = [
    "acha", "achy", "achay", "khali", "aain", "aram", "aate", "achi", "aik", "asaani", 
    "aur", "aj", "aya", "baat", "behas", "behtar", "bohot", "chal", "deh", "dala", 
    "dali", "dalta", "deen", "detay", "deta", "deti", "dostana", "di", "diya", "diye", 
    "dilchasp", "fori", "gaya", "ganda", "gaye", "hain", "hai", "hi", "hoslaafzai", 
    "hoti", "hotay", "hua", "huay", "hue", "hosla", "huin", "hal", "hain", "hui", 
    "imtihaan", "ja", "kab", "kabhi", "ka", "kam", "karta", "ke", "kesy", "khrab", 
    "kharab", "kiya", "kun", "ki", "kamzor", "ko", "kuch", "lamba", "lambe", "liye", 
    "madad", "madadgar", "maine", "mehdood", "mein", "mera", "meri", "munsifana", 
    "mutaharrik", "munazzam", "mufeed", "mushkil", "mukhtasir", "mutasir", "mukammal", 
    "na", "namukammal", "nishistain", "naqis", "nahi", "ne", "nisab", "par", "pasand", 
    "paya", "py", "pursukoon", "purani", "purana", "purany", "raha", "roshan", "rakhi", 
    "saka", "samajh", "sarah", "se", "shandaar", "seekha", "sust", "saaf", "suthri", 
    "tareef", "targheeb", "tez", "tha", "thay", "theen", "tulaba", "thein", "thin", 
    "thi", "tor", "tumne", "uljha", "ur", "usne", "ustad", "waqfa", "wala", "wazeh", 
    "zyada", "zabardast", "bohat", "kya", "main", "tum", "wo", "ye", "unhon", "inhon"
]

# Compile regex patterns
roman_urdu_pattern_core = re.compile(r'\b(' + "|".join(roman_urdu_core) + r')\b', re.IGNORECASE)

def detect_language_enhanced(text):
    """Enhanced language detection using both model and rule-based approach"""
    if not text.strip():
        return "English"
    
    text_clean = str(text).strip()
    
    # Step 1: Urdu script detection (most reliable)
    if re.search(r'[\u0600-\u06FF]', text_clean):
        return "Urdu"
    
    # Step 2: Use transformer model for language detection
    try:
        lang_result = lang_detector(text_clean[:512])[0]  # Limit text length
        lang_label = lang_result['label']
        lang_score = lang_result['score']
        
        if lang_label == 'ur' and lang_score > 0.7:
            return "Urdu"
        elif lang_label in ['en', 'ur'] and lang_score > 0.6:
            # Further check for Roman Urdu
            core_hits = len(re.findall(roman_urdu_pattern_core, text_clean.lower()))
            tokens = re.findall(r'\b\w+\b', text_clean)
            total_tokens = len(tokens)
            
            # Strong Roman Urdu indicators
            if core_hits >= 2:
                return "Roman Urdu"
            elif core_hits >= 1 and total_tokens <= 6:
                return "Roman Urdu"
            elif core_hits / max(total_tokens, 1) > 0.3:  # 30% Roman Urdu words
                return "Roman Urdu"
            
            return "English" if lang_label == 'en' else "Urdu"
            
    except Exception as e:
        print(f"Language detection error: {e}")
    
    # Fallback: Rule-based detection
    return detect_language_fallback(text_clean)

def detect_language_fallback(text):
    """Fallback language detection using rules"""
    text_lower = text.lower()
    
    # Urdu script check
    if re.search(r'[\u0600-\u06FF]', text):
        return "Urdu"
    
    # Count Roman Urdu core words
    core_hits = len(re.findall(roman_urdu_pattern_core, text_lower))
    tokens = re.findall(r'\b\w+\b', text_lower)
    total_tokens = len(tokens)
    
    # Roman Urdu detection rules
    if core_hits >= 2:
        return "Roman Urdu"
    elif core_hits >= 1 and total_tokens <= 5:
        return "Roman Urdu"
    elif core_hits / max(total_tokens, 1) > 0.25:  # 25% threshold
        return "Roman Urdu"
    
    return "English"

# -----------------------------
# Enhanced Roman Urdu Normalization
# -----------------------------
def normalize_roman_urdu_enhanced(text):
    """Enhanced Roman Urdu text normalization"""
    text = text.lower().strip()
    
    # Common Roman Urdu variations normalization
    replacements = {
        r'\bhy\b': 'hai',
        r'\bh\b': 'hai',
        r'\bnhi\b': 'nahi',
        r'\bnai\b': 'nahi',
        r'\bna\b': 'nahi',
        r'\bboht\b': 'bohot',
        r'\bbhot\b': 'bohot',
        r'\bzyada\b': 'zyada',
        r'\bzada\b': 'zyada',
        r'\bacha\b': 'acha',
        r'\bachay\b': 'achay',
        r'\bthy\b': 'thay',
        r'\bthi\b': 'thi',
        r'\btha\b': 'tha'
    }
    
    for pattern, replacement in replacements.items():
        text = re.sub(pattern, replacement, text)
    
    return text

# -----------------------------
# Sentiment Analysis Enhancement
# -----------------------------
def get_strong_words(text, language):
    """Extract strong sentiment-bearing words"""
    text_lower = text.lower()
    strong_words = []
    
    # Positive indicators
    positive_patterns = {
        'english': [r'excellent', r'outstanding', r'amazing', r'wonderful', r'perfect', 
                   r'brilliant', r'fantastic', r'superb', r'terrible', r'awful', 
                   r'horrible', r'disappointing', r'poor', r'bad'],
        'urdu': [r'زبردست', r'شاندار', r'عمدہ', r'بہترین', r'خراب', r'برا', r'مایوس کن'],
        'roman_urdu': [r'zabardast', r'shandaar', r'umdah', r'behtareen', r'kharab', 
                      r'bura', r'mayus', r'kamaal']
    }
    
    lang_key = 'english' if language == 'English' else 'urdu' if language == 'Urdu' else 'roman_urdu'
    
    for pattern in positive_patterns[lang_key]:
        matches = re.findall(pattern, text_lower, re.IGNORECASE)
        strong_words.extend(matches)
    
    return strong_words

def adjust_sentiment_with_context(text, sentiment, score, language):
    """Adjust sentiment based on context and strong words"""
    strong_words = get_strong_words(text, language)
    
    # If strong negative words present but sentiment is positive/neutral, adjust
    negative_indicators = ['terrible', 'awful', 'horrible', 'disappointing', 'poor', 'bad', 
                          'خراب', 'برا', 'مایوس کن', 'kharab', 'bura', 'mayus']
    
    positive_indicators = ['excellent', 'outstanding', 'amazing', 'wonderful', 'perfect',
                          'brilliant', 'fantastic', 'superb', 'زبردست', 'شاندار', 'عمدہ',
                          'zabardast', 'shandaar', 'umdah']
    
    strong_negative_present = any(word in strong_words for word in negative_indicators)
    strong_positive_present = any(word in strong_words for word in positive_indicators)
    
    # Adjustment rules
    if strong_negative_present and sentiment in ["Positive", "Neutral"] and score < 0.8:
        return "Negative", min(score + 0.2, 0.95)
    elif strong_positive_present and sentiment in ["Negative", "Neutral"] and score < 0.8:
        return "Positive", min(score + 0.2, 0.95)
    
    # Low confidence adjustment
    if score < 0.6:
        return "Neutral", 0.5
    
    return sentiment, score

# -----------------------------
# Enhanced Ensemble Method
# -----------------------------
def ensemble_roman_urdu_enhanced(text):
    """Enhanced ensemble for Roman Urdu sentiment"""
    normalized_text = normalize_roman_urdu_enhanced(text)
    
    try:
        ru_result = roman_urdu_model(normalized_text)[0]
        ur_result = urdu_model(normalized_text)[0]
        
        ru_sent = normalize_label(ru_result["label"])
        ur_sent = normalize_label(ur_result["label"])
        
        # If both agree, return the higher confidence one
        if ru_sent == ur_sent:
            return ru_result if ru_result["score"] >= ur_result["score"] else ur_result
        
        # Weight Roman Urdu model higher for Roman Urdu text
        ru_weight = ru_result["score"] * 1.3  # Increased weight
        ur_weight = ur_result["score"]
        
        return ru_result if ru_weight >= ur_weight else ur_result
        
    except Exception as e:
        print(f"Ensemble error: {e}")
        # Fallback to Roman Urdu model
        return roman_urdu_model(normalized_text)[0]

# -----------------------------
# Normalize Labels
# -----------------------------
def normalize_label(label):
    """Normalize sentiment labels across different models"""
    label = str(label).lower()
    
    if any(word in label for word in ["pos", "positive", "positive", "lab"]):
        return "Positive"
    elif any(word in label for word in ["neg", "negative", "negative"]):
        return "Negative"
    else:
        return "Neutral"

# -----------------------------
# Polarity Explanation
# -----------------------------
def polarity_explanation_enhanced(text, sentiment, score, language):
    """Enhanced polarity explanation with examples"""
    strong_words = get_strong_words(text, language)
    
    explanations = {
        "Positive": {
            "high": "Strong positive sentiment with clear praise words.",
            "medium": "Moderately positive with some favorable expressions.",
            "low": "Slightly positive tone."
        },
        "Negative": {
            "high": "Strong negative sentiment with clear criticism.",
            "medium": "Moderately negative with some critical expressions.",
            "low": "Slightly negative tone."
        },
        "Neutral": {
            "high": "Clearly neutral or factual statement.",
            "medium": "Mostly neutral with balanced perspective.",
            "low": "Weak sentiment leaning neutral."
        }
    }
    
    # Determine confidence level
    if score >= 0.8:
        confidence = "high"
    elif score >= 0.6:
        confidence = "medium"
    else:
        confidence = "low"
    
    base_explanation = explanations[sentiment][confidence]
    
    if strong_words:
        base_explanation += f" Key words: {', '.join(strong_words[:3])}."
    
    return base_explanation

# -----------------------------
# CSV Setup
# -----------------------------
SAVE_FILE = "sentiment_logs.csv"
LOCK_FILE = SAVE_FILE + ".lock"

if not os.path.exists(SAVE_FILE):
    pd.DataFrame(columns=["Sentence", "Language", "Sentiment", "Confidence", "Strong_Words"]).to_csv(
        SAVE_FILE, index=False, encoding="utf-8-sig"
    )

# -----------------------------
# Main Analysis Function
# -----------------------------
def analyze_sentiment_enhanced(text, lang_hint):
    """Enhanced sentiment analysis with better language detection and context"""
    if not text.strip():
        return "⚠️ Please enter a sentence.", "", "", SAVE_FILE, ""

    # Language detection
    lang = lang_hint if lang_hint != "Auto Detect" else detect_language_enhanced(text)
    
    try:
        # Sentiment analysis based on language
        if lang == "English":
            result = english_model(text[:512])[0]  # Limit text length
        elif lang == "Urdu":
            result = urdu_model(text[:512])[0]
        else:  # Roman Urdu
            result = ensemble_roman_urdu_enhanced(text)
        
        sentiment = normalize_label(result["label"])
        score = round(float(result["score"]), 3)
        
        # Context-aware sentiment adjustment
        sentiment, score = adjust_sentiment_with_context(text, sentiment, score, lang)
        
        # Get strong words and explanation
        strong_words = get_strong_words(text, lang)
        explanation = polarity_explanation_enhanced(text, sentiment, score, lang)
        strong_words_str = ", ".join(strong_words[:5]) if strong_words else "None"
        
        # Save logs
        with FileLock(LOCK_FILE):
            df = pd.read_csv(SAVE_FILE, encoding="utf-8-sig") \
                if os.path.exists(SAVE_FILE) else pd.DataFrame(
                    columns=["Sentence", "Language", "Sentiment", "Confidence", "Strong_Words"]
                )
            new_row = pd.DataFrame([[text, lang, sentiment, score, strong_words_str]],
                                 columns=["Sentence", "Language", "Sentiment", "Confidence", "Strong_Words"])
            df = pd.concat([df, new_row], ignore_index=True)
            df.to_csv(SAVE_FILE, index=False, encoding="utf-8-sig")

        return sentiment, str(score), explanation, SAVE_FILE, strong_words_str
        
    except Exception as e:
        error_msg = f"Analysis error: {str(e)}"
        return "Error", "0", error_msg, SAVE_FILE, ""

# -----------------------------
# Show Logs
# -----------------------------
def show_logs():
    if os.path.exists(SAVE_FILE):
        df = pd.read_csv(SAVE_FILE, encoding="utf-8-sig")
        return df.tail(20)  # Show last 20 entries
    else:
        return pd.DataFrame(columns=["Sentence", "Language", "Sentiment", "Confidence", "Strong_Words"])

# -----------------------------
# Clear Logs
# -----------------------------
def clear_logs():
    if os.path.exists(SAVE_FILE):
        os.remove(SAVE_FILE)
    return pd.DataFrame(columns=["Sentence", "Language", "Sentiment", "Confidence", "Strong_Words"])

# -----------------------------
# Enhanced Gradio UI
# -----------------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # 🌍 Enhanced Multilingual Sentiment Analysis
        **English • Urdu • Roman Urdu**
        
        Advanced sentiment detection with:
        - 🤖 Transformer-based language detection
        - 🔍 Context-aware sentiment analysis  
        - 💪 Strong word extraction
        - 🎯 Enhanced Roman Urdu processing
        """
    )

    with gr.Row():
        with gr.Column(scale=1):
            user_text = gr.Textbox(
                label="✍️ Enter Text",
                placeholder="Type in English, Urdu, or Roman Urdu...",
                lines=3
            )
            lang_dropdown = gr.Dropdown(
                ["Auto Detect", "English", "Urdu", "Roman Urdu"],
                value="Auto Detect",
                label="🌐 Language Selection"
            )
            
            with gr.Row():
                btn_analyze = gr.Button("🔍 Analyze Sentiment", variant="primary")
                btn_show = gr.Button("📂 Show Recent Logs")
                btn_clear = gr.Button("🗑️ Clear Logs", variant="secondary")

        with gr.Column(scale=1):
            out_sent = gr.Textbox(label="🎭 Sentiment")
            out_conf = gr.Textbox(label="📊 Confidence Score")
            out_exp = gr.Textbox(label="💡 Analysis Explanation")
            out_strong = gr.Textbox(label="💪 Strong Words Detected")
            out_file = gr.File(label="⬇️ Download Complete Logs", type="filepath")

    with gr.Row():
        logs_df = gr.Dataframe(
            headers=["Sentence", "Language", "Sentiment", "Confidence", "Strong_Words"],
            label="📋 Recent Sentiment Logs",
            interactive=False,
            wrap=True,
            max_height=400
        )

    # Event handlers
    btn_analyze.click(
        analyze_sentiment_enhanced,
        inputs=[user_text, lang_dropdown],
        outputs=[out_sent, out_conf, out_exp, out_file, out_strong]
    )
    
    btn_show.click(show_logs, outputs=[logs_df])
    btn_clear.click(clear_logs, outputs=[logs_df])

if __name__ == "__main__":
    demo.launch(share=False)