name
string
module
string
type
string
Turing.EvalsTo.mk.inj
Mathlib.Computability.TMComputable
βˆ€ {Οƒ : Type u_1} {f : Οƒ β†’ Option Οƒ} {a : Οƒ} {b : Option Οƒ} {steps : β„•} {evals_in_steps : (flip bind f)^[steps] (some a) = b} {steps_1 : β„•} {evals_in_steps_1 : (flip bind f)^[steps_1] (some a) = b}, { steps := steps, evals_in_steps := evals_in_steps } = { steps := steps_1, evals_in_steps := evals_in_steps_1 } β†’ steps = steps_1
AddAction.prodOfVAddCommClass.eq_1
Mathlib.Algebra.Group.Action.Prod
βˆ€ (M : Type u_1) (N : Type u_2) (Ξ± : Type u_5) [inst : AddMonoid M] [inst_1 : AddMonoid N] [inst_2 : AddAction M Ξ±] [inst_3 : AddAction N Ξ±] [inst_4 : VAddCommClass M N Ξ±], AddAction.prodOfVAddCommClass M N Ξ± = { vadd := fun mn a => mn.1 +α΅₯ mn.2 +α΅₯ a, add_vadd := β‹―, zero_vadd := β‹― }
Finpartition.empty._proof_1
Mathlib.Order.Partition.Finpartition
βˆ€ (Ξ± : Type u_1) [inst : Lattice Ξ±] [inst_1 : OrderBot Ξ±], βˆ….SupIndep id
IsFractionRing.ringEquivOfRingEquiv_algebraMap
Mathlib.RingTheory.Localization.FractionRing
βˆ€ {A : Type u_8} {K : Type u_9} {B : Type u_10} {L : Type u_11} [inst : CommRing A] [inst_1 : CommRing B] [inst_2 : CommRing K] [inst_3 : CommRing L] [inst_4 : Algebra A K] [inst_5 : IsFractionRing A K] [inst_6 : Algebra B L] [inst_7 : IsFractionRing B L] (h : A ≃+* B) (a : A), (IsFractionRing.ringEquivOfRingEquiv h) ((algebraMap A K) a) = (algebraMap B L) (h a)
Matrix.nonAssocSemiring
Mathlib.Data.Matrix.Mul
{n : Type u_3} β†’ {Ξ± : Type v} β†’ [NonAssocSemiring Ξ±] β†’ [Fintype n] β†’ [DecidableEq n] β†’ NonAssocSemiring (Matrix n n Ξ±)
_private.Mathlib.Topology.Separation.Hausdorff.0.t2_iff_nhds._simp_1_4
Mathlib.Topology.Separation.Hausdorff
βˆ€ {a b : Prop}, (Β¬a β†’ b) = (Β¬b β†’ a)
Lean.Elab.Tactic.BVDecide.LRAT.trim.M.markUsed
Lean.Elab.Tactic.BVDecide.LRAT.Trim
β„• β†’ Lean.Elab.Tactic.BVDecide.LRAT.trim.M Unit
Lean.Lsp.instToJsonCompletionClientCapabilities.toJson
Lean.Data.Lsp.Capabilities
Lean.Lsp.CompletionClientCapabilities β†’ Lean.Json
measurableSet_le'
Mathlib.MeasureTheory.Constructions.BorelSpace.Order
βˆ€ {Ξ± : Type u_1} [inst : TopologicalSpace Ξ±] {mΞ± : MeasurableSpace Ξ±} [OpensMeasurableSpace Ξ±] [inst_2 : PartialOrder Ξ±] [OrderClosedTopology Ξ±] [SecondCountableTopology Ξ±], MeasurableSet {p | p.1 ≀ p.2}
Std.TreeMap.Raw.Equiv.getElem_eq
Std.Data.TreeMap.Raw.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t₁ tβ‚‚ : Std.TreeMap.Raw Ξ± Ξ² cmp} [inst : Std.TransCmp cmp] {k : Ξ±} {hk : k ∈ t₁} (h₁ : t₁.WF) (hβ‚‚ : tβ‚‚.WF) (h : t₁.Equiv tβ‚‚), t₁[k] = tβ‚‚[k]
CategoryTheory.SmallObject.functorMapSrc._proof_1
Mathlib.CategoryTheory.SmallObject.Construction
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] {I : Type u_3} {A B : I β†’ C} (f : (i : I) β†’ A i ⟢ B i) {S T X Y : C} {Ο€X : X ⟢ S} {Ο€Y : Y ⟢ T} (Ο„ : CategoryTheory.Arrow.mk Ο€X ⟢ CategoryTheory.Arrow.mk Ο€Y) (x : CategoryTheory.SmallObject.FunctorObjIndex f Ο€X), CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp x.t Ο„.left) Ο€Y = CategoryTheory.CategoryStruct.comp (f x.i) (CategoryTheory.CategoryStruct.comp x.b Ο„.right)
dif_eq_if
Init.ByCases
βˆ€ (c : Prop) {h : Decidable c} {Ξ± : Sort u} (t e : Ξ±), (if x : c then t else e) = if c then t else e
List.forall_getElem
Init.Data.List.Lemmas
βˆ€ {Ξ± : Type u_1} {l : List Ξ±} {p : Ξ± β†’ Prop}, (βˆ€ (i : β„•) (h : i < l.length), p l[i]) ↔ βˆ€ a ∈ l, p a
Std.HashSet.Raw.get?_union
Std.Data.HashSet.RawLemmas
βˆ€ {Ξ± : Type u} [inst : BEq Ξ±] [inst_1 : Hashable Ξ±] {m₁ mβ‚‚ : Std.HashSet.Raw Ξ±} [EquivBEq Ξ±] [LawfulHashable Ξ±], m₁.WF β†’ mβ‚‚.WF β†’ βˆ€ {k : Ξ±}, (m₁ βˆͺ mβ‚‚).get? k = (mβ‚‚.get? k).or (m₁.get? k)
AddCommGrpCat.Hom.hom.eq_1
Mathlib.Algebra.Category.Grp.Basic
βˆ€ {X Y : AddCommGrpCat} (f : X.Hom Y), f.hom = CategoryTheory.ConcreteCategory.hom f
Lean.Data.AC.EvalInformation.arbitrary
Init.Data.AC
{Ξ± : Sort u} β†’ {Ξ² : Sort v} β†’ [self : Lean.Data.AC.EvalInformation Ξ± Ξ²] β†’ Ξ± β†’ Ξ²
_private.Init.PropLemmas.0.and_right_comm.match_1_1
Init.PropLemmas
βˆ€ {a b c : Prop} (motive : (a ∧ b) ∧ c β†’ Prop) (x : (a ∧ b) ∧ c), (βˆ€ (ha : a) (hb : b) (hc : c), motive β‹―) β†’ motive x
CommRingCat.Colimits.Prequotient.recOn
Mathlib.Algebra.Category.Ring.Colimits
{J : Type v} β†’ [inst : CategoryTheory.SmallCategory J] β†’ {F : CategoryTheory.Functor J CommRingCat} β†’ {motive : CommRingCat.Colimits.Prequotient F β†’ Sort u} β†’ (t : CommRingCat.Colimits.Prequotient F) β†’ ((j : J) β†’ (x : ↑(F.obj j)) β†’ motive (CommRingCat.Colimits.Prequotient.of j x)) β†’ motive CommRingCat.Colimits.Prequotient.zero β†’ motive CommRingCat.Colimits.Prequotient.one β†’ ((a : CommRingCat.Colimits.Prequotient F) β†’ motive a β†’ motive a.neg) β†’ ((a a_1 : CommRingCat.Colimits.Prequotient F) β†’ motive a β†’ motive a_1 β†’ motive (a.add a_1)) β†’ ((a a_1 : CommRingCat.Colimits.Prequotient F) β†’ motive a β†’ motive a_1 β†’ motive (a.mul a_1)) β†’ motive t
ZNum.zero.sizeOf_spec
Mathlib.Data.Num.Basic
sizeOf ZNum.zero = 1
Pi.borelSpace
Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
βˆ€ {ΞΉ : Type u_6} {X : ΞΉ β†’ Type u_7} [Countable ΞΉ] [inst : (i : ΞΉ) β†’ TopologicalSpace (X i)] [inst_1 : (i : ΞΉ) β†’ MeasurableSpace (X i)] [βˆ€ (i : ΞΉ), SecondCountableTopology (X i)] [βˆ€ (i : ΞΉ), BorelSpace (X i)], BorelSpace ((i : ΞΉ) β†’ X i)
_private.Batteries.Data.RBMap.WF.0.Batteries.RBNode.Balanced.reverse.match_1_1
Batteries.Data.RBMap.WF
βˆ€ {Ξ± : Type u_1} (motive : (n : β„•) β†’ (c : Batteries.RBColor) β†’ (t : Batteries.RBNode Ξ±) β†’ t.Balanced c n β†’ Prop) (n : β„•) (c : Batteries.RBColor) (t : Batteries.RBNode Ξ±) (x : t.Balanced c n), (βˆ€ (a : Unit), motive 0 Batteries.RBColor.black Batteries.RBNode.nil β‹―) β†’ (βˆ€ (x : Batteries.RBNode Ξ±) (c₁ : Batteries.RBColor) (n : β„•) (y : Batteries.RBNode Ξ±) (cβ‚‚ : Batteries.RBColor) (v : Ξ±) (hl : x.Balanced c₁ n) (hr : y.Balanced cβ‚‚ n), motive (n + 1) Batteries.RBColor.black (Batteries.RBNode.node Batteries.RBColor.black x v y) β‹―) β†’ (βˆ€ (n : β„•) (x y : Batteries.RBNode Ξ±) (v : Ξ±) (hl : x.Balanced Batteries.RBColor.black n) (hr : y.Balanced Batteries.RBColor.black n), motive n Batteries.RBColor.red (Batteries.RBNode.node Batteries.RBColor.red x v y) β‹―) β†’ motive n c t x
_private.Mathlib.FieldTheory.IntermediateField.Adjoin.Basic.0.IntermediateField.exists_finset_of_mem_adjoin._simp_1_1
Mathlib.FieldTheory.IntermediateField.Adjoin.Basic
βˆ€ {Ξ± : Type u_1} [inst : CompleteLattice Ξ±] {ΞΉ : Type u_8} (s : Set ΞΉ) (f : ΞΉ β†’ Ξ±), ⨆ t ∈ s, f t = ⨆ i, f ↑i
ENorm
Mathlib.Analysis.Normed.Group.Basic
Type u_8 β†’ Type u_8
MvPowerSeries.hasSum_evalβ‚‚
Mathlib.RingTheory.MvPowerSeries.Evaluation
βˆ€ {Οƒ : Type u_1} {R : Type u_2} [inst : CommRing R] [inst_1 : UniformSpace R] {S : Type u_3} [inst_2 : CommRing S] [inst_3 : UniformSpace S] {Ο† : R β†’+* S} {a : Οƒ β†’ S} [IsTopologicalSemiring R] [IsUniformAddGroup R] [IsUniformAddGroup S] [CompleteSpace S] [T2Space S] [IsTopologicalRing S] [IsLinearTopology S S], Continuous ⇑φ β†’ MvPowerSeries.HasEval a β†’ βˆ€ (f : MvPowerSeries Οƒ R), HasSum (fun d => Ο† ((MvPowerSeries.coeff d) f) * d.prod fun s e => a s ^ e) (MvPowerSeries.evalβ‚‚ Ο† a f)
Lean.Meta.InductionSubgoal.mk
Lean.Meta.Tactic.Induction
Lean.MVarId β†’ Array Lean.Expr β†’ Lean.Meta.FVarSubst β†’ Lean.Meta.InductionSubgoal
_private.Lean.Server.CodeActions.Basic.0.Lean.Server.evalCodeActionProviderUnsafe
Lean.Server.CodeActions.Basic
{M : Type β†’ Type} β†’ [Lean.MonadEnv M] β†’ [Lean.MonadOptions M] β†’ [Lean.MonadError M] β†’ [Monad M] β†’ Lean.Name β†’ M Lean.Server.CodeActionProvider
_private.Init.Data.Range.Polymorphic.Iterators.0.Std.Rio.Internal.isPlausibleIndirectOutput_iter_iff._simp_1_1
Init.Data.Range.Polymorphic.Iterators
βˆ€ {Ξ± : Type u} {inst : Std.PRange.UpwardEnumerable Ξ±} {inst_1 : LT Ξ±} [self : Std.PRange.LawfulUpwardEnumerableLT Ξ±] (a b : Ξ±), (a < b) = Std.PRange.UpwardEnumerable.LT a b
Subalgebra.LinearDisjoint.rank_inf_eq_one_of_commute_of_flat_right_of_inj
Mathlib.RingTheory.LinearDisjoint
βˆ€ {R : Type u} {S : Type v} [inst : CommRing R] [inst_1 : Ring S] [inst_2 : Algebra R S] {A B : Subalgebra R S}, A.LinearDisjoint B β†’ βˆ€ [Module.Flat R β†₯B], (βˆ€ (a b : β†₯(A βŠ“ B)), Commute ↑a ↑b) β†’ Function.Injective ⇑(algebraMap R S) β†’ Module.rank R β†₯(A βŠ“ B) = 1
Subalgebra.toSubmoduleEquiv
Mathlib.Algebra.Algebra.Subalgebra.Basic
{R : Type u} β†’ {A : Type v} β†’ [inst : CommSemiring R] β†’ [inst_1 : Semiring A] β†’ [inst_2 : Algebra R A] β†’ (S : Subalgebra R A) β†’ β†₯(Subalgebra.toSubmodule S) ≃ₗ[R] β†₯S
ENat.coe_sSup
Mathlib.Data.ENat.Lattice
βˆ€ {s : Set β„•}, BddAbove s β†’ ↑(sSup s) = ⨆ a ∈ s, ↑a
_private.Aesop.Util.UnorderedArraySet.0.Aesop.UnorderedArraySet.mk.inj
Aesop.Util.UnorderedArraySet
βˆ€ {Ξ± : Type u_1} {inst : BEq Ξ±} {rep rep_1 : Array Ξ±}, { rep := rep } = { rep := rep_1 } β†’ rep = rep_1
StandardEtalePresentation._sizeOf_inst
Mathlib.RingTheory.Etale.StandardEtale
(R : Type u_4) β†’ (S : Type u_5) β†’ {inst : CommRing R} β†’ {inst_1 : CommRing S} β†’ {inst_2 : Algebra R S} β†’ [SizeOf R] β†’ [SizeOf S] β†’ SizeOf (StandardEtalePresentation R S)
_private.Lean.Environment.0.Lean.Visibility.private.elim
Lean.Environment
{motive : Lean.Visibility✝ β†’ Sort u} β†’ (t : Lean.Visibility✝¹) β†’ Lean.Visibility.ctorIdx✝ t = 0 β†’ motive Lean.Visibility.private✝ β†’ motive t
Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_add
Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
Lean.Meta.Simp.Simproc
Equiv.Perm.extendDomain_apply_subtype
Mathlib.Logic.Equiv.Basic
βˆ€ {Ξ±' : Type u_9} {Ξ²' : Type u_10} (e : Equiv.Perm Ξ±') {p : Ξ²' β†’ Prop} [inst : DecidablePred p] (f : Ξ±' ≃ Subtype p) {b : Ξ²'} (h : p b), (e.extendDomain f) b = ↑(f (e (f.symm ⟨b, h⟩)))
Nat.ModEq.add_iff_left._simp_1
Mathlib.Data.Nat.ModEq
βˆ€ {n a b c d : β„•}, a ≑ b [MOD n] β†’ (a + c ≑ b + d [MOD n]) = (c ≑ d [MOD n])
Int8.toInt32_neg_of_ne
Init.Data.SInt.Lemmas
βˆ€ {x : Int8}, x β‰  -128 β†’ (-x).toInt32 = -x.toInt32
_private.Lean.Meta.Tactic.Grind.Arith.Linear.OfNatModule.0.Lean.Meta.Grind.Arith.Linear.ofNatModule'._unsafe_rec
Lean.Meta.Tactic.Grind.Arith.Linear.OfNatModule
Lean.Expr β†’ Lean.Meta.Grind.Arith.Linear.OfNatModuleM (Lean.Expr Γ— Lean.Expr)
Ideal.mem_prod
Mathlib.RingTheory.Ideal.Prod
βˆ€ {R : Type u} {S : Type v} [inst : Semiring R] [inst_1 : Semiring S] (I : Ideal R) (J : Ideal S) {x : R Γ— S}, x ∈ I.prod J ↔ x.1 ∈ I ∧ x.2 ∈ J
MeasurableEquiv.coe_mulLeft
Mathlib.MeasureTheory.Group.MeasurableEquiv
βˆ€ {G : Type u_1} [inst : Group G] [inst_1 : MeasurableSpace G] [inst_2 : MeasurableMul G] (g : G), ⇑(MeasurableEquiv.mulLeft g) = fun x => g * x
MeasureTheory.toOuterMeasure_eq_inducedOuterMeasure
Mathlib.MeasureTheory.Measure.MeasureSpaceDef
βˆ€ {Ξ± : Type u_1} [inst : MeasurableSpace Ξ±] {ΞΌ : MeasureTheory.Measure Ξ±}, ΞΌ.toOuterMeasure = MeasureTheory.inducedOuterMeasure (fun s x => ΞΌ s) β‹― β‹―
_private.Lean.Elab.CheckTactic.0.Lean.Elab.CheckTactic.elabCheckTactic._sparseCasesOn_5
Lean.Elab.CheckTactic
{Ξ± : Type u} β†’ {motive : List Ξ± β†’ Sort u_1} β†’ (t : List Ξ±) β†’ motive [] β†’ (t.ctorIdx β‰  0 β†’ motive t) β†’ motive t
ProofWidgets.Penrose.DiagramBuilderM.addEmbed
ProofWidgets.Component.PenroseDiagram
String β†’ String β†’ ProofWidgets.Html β†’ ProofWidgets.Penrose.DiagramBuilderM Unit
String.Pos.Raw.Valid.mk
Batteries.Data.String.Lemmas
βˆ€ (cs cs' : List Char) {p : String.Pos.Raw}, p.byteIdx = String.utf8Len cs β†’ String.Pos.Raw.Valid (String.ofList (cs ++ cs')) p
_private.Mathlib.MeasureTheory.Measure.WithDensity.0.MeasureTheory.lintegral_withDensity_eq_lintegral_mulβ‚€'._simp_1_2
Mathlib.MeasureTheory.Measure.WithDensity
βˆ€ {Ξ± : Type u} (s : Set Ξ±) (x : Ξ±), (x ∈ sᢜ) = (x βˆ‰ s)
ProbabilityTheory.condVar_of_sigmaFinite
Mathlib.Probability.CondVar
βˆ€ {Ξ© : Type u_1} {mβ‚€ m : MeasurableSpace Ξ©} {hm : m ≀ mβ‚€} {X : Ξ© β†’ ℝ} {ΞΌ : MeasureTheory.Measure Ξ©} [inst : MeasureTheory.SigmaFinite (ΞΌ.trim hm)], ProbabilityTheory.condVar m X ΞΌ = if MeasureTheory.Integrable (fun Ο‰ => (X Ο‰ - ΞΌ[X|m] Ο‰) ^ 2) ΞΌ then if MeasureTheory.StronglyMeasurable fun Ο‰ => (X Ο‰ - ΞΌ[X|m] Ο‰) ^ 2 then fun Ο‰ => (X Ο‰ - ΞΌ[X|m] Ο‰) ^ 2 else MeasureTheory.AEStronglyMeasurable.mk ↑↑(MeasureTheory.condExpL1 hm ΞΌ fun Ο‰ => (X Ο‰ - ΞΌ[X|m] Ο‰) ^ 2) β‹― else 0
Std.DTreeMap.Internal.Impl.foldrM.eq_1
Std.Data.DTreeMap.Internal.WF.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {Ξ΄ : Type w} {m : Type w β†’ Type u_1} [inst : Monad m] (f : (a : Ξ±) β†’ Ξ² a β†’ Ξ΄ β†’ m Ξ΄) (init : Ξ΄), Std.DTreeMap.Internal.Impl.foldrM f init Std.DTreeMap.Internal.Impl.leaf = pure init
OrderDual.instLocallyFiniteOrderTop
Mathlib.Order.Interval.Finset.Defs
{Ξ± : Type u_1} β†’ [inst : Preorder Ξ±] β†’ [LocallyFiniteOrderBot Ξ±] β†’ LocallyFiniteOrderTop Ξ±α΅’α΅ˆ
ContractingWith.edist_efixedPoint_lt_top
Mathlib.Topology.MetricSpace.Contracting
βˆ€ {Ξ± : Type u_1} [inst : EMetricSpace Ξ±] {K : NNReal} {f : Ξ± β†’ Ξ±} [inst_1 : CompleteSpace Ξ±] (hf : ContractingWith K f) {x : Ξ±} (hx : edist x (f x) β‰  ⊀), edist x (ContractingWith.efixedPoint f hf x hx) < ⊀
CategoryTheory.LocallyDiscrete.mkPseudofunctor._proof_1
Mathlib.CategoryTheory.Bicategory.Functor.LocallyDiscrete
βˆ€ {Bβ‚€ : Type u_5} {C : Type u_2} [inst : CategoryTheory.Category.{u_4, u_5} Bβ‚€] [inst_1 : CategoryTheory.Bicategory C] (obj : Bβ‚€ β†’ C) (map : {b b' : Bβ‚€} β†’ (b ⟢ b') β†’ (obj b ⟢ obj b')) {bβ‚€ b₁ bβ‚‚ b₃ : Bβ‚€} (f : bβ‚€ ⟢ b₁) (g : b₁ ⟢ bβ‚‚) (h : bβ‚‚ ⟢ b₃), map (CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp f g) h) = map (CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp g h))
CategoryTheory.Grothendieck.forget
Mathlib.CategoryTheory.Grothendieck
{C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ (F : CategoryTheory.Functor C CategoryTheory.Cat) β†’ CategoryTheory.Functor (CategoryTheory.Grothendieck F) C
CategoryTheory.Monoidal.induced._simp_4
Mathlib.CategoryTheory.Monoidal.Transport
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {X Y Z : C} (f : Y β‰… X) (g g' : Y ⟢ Z), (CategoryTheory.CategoryStruct.comp f.inv g = CategoryTheory.CategoryStruct.comp f.inv g') = (g = g')
Lean.Lsp.ParameterInformationLabel.range.elim
Lean.Data.Lsp.LanguageFeatures
{motive : Lean.Lsp.ParameterInformationLabel β†’ Sort u} β†’ (t : Lean.Lsp.ParameterInformationLabel) β†’ t.ctorIdx = 1 β†’ ((startUtf16Offset endUtf16Offset : β„•) β†’ motive (Lean.Lsp.ParameterInformationLabel.range startUtf16Offset endUtf16Offset)) β†’ motive t
ENat.one_epow
Mathlib.Data.ENat.Pow
βˆ€ {y : β„•βˆž}, 1 ^ y = 1
AlgebraicGeometry.Scheme.OpenCover.ext_elem
Mathlib.AlgebraicGeometry.Cover.Open
βˆ€ {X : AlgebraicGeometry.Scheme} {U : X.Opens} (f g : ↑(X.presheaf.obj (Opposite.op U))) (𝒰 : X.OpenCover), (βˆ€ (i : 𝒰.Iβ‚€), (CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.app (𝒰.f i) U)) f = (CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.app (𝒰.f i) U)) g) β†’ f = g
Std.Internal.List.containsKey_of_perm
Std.Data.Internal.List.Associative
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} [inst : BEq Ξ±] [PartialEquivBEq Ξ±] {l l' : List ((a : Ξ±) Γ— Ξ² a)} {k : Ξ±}, l.Perm l' β†’ Std.Internal.List.containsKey k l = Std.Internal.List.containsKey k l'
tendsto_inv_atTop_nhds_zero_nat
Mathlib.Analysis.SpecificLimits.Basic
βˆ€ {π•œ : Type u_4} [inst : DivisionSemiring π•œ] [inst_1 : CharZero π•œ] [inst_2 : TopologicalSpace π•œ] [ContinuousSMul β„šβ‰₯0 π•œ], Filter.Tendsto (fun n => (↑n)⁻¹) Filter.atTop (nhds 0)
UpperSet.isTotal_le
Mathlib.Order.UpperLower.CompleteLattice
βˆ€ {Ξ± : Type u_1} [inst : LinearOrder Ξ±], IsTotal (UpperSet Ξ±) fun x1 x2 => x1 ≀ x2
instNoMinOrderElemIoc
Mathlib.Order.Interval.Set.Basic
βˆ€ (Ξ± : Type u_1) [inst : Preorder Ξ±] [DenselyOrdered Ξ±] {x y : Ξ±}, NoMinOrder ↑(Set.Ioc x y)
_private.Mathlib.NumberTheory.DiophantineApproximation.Basic.0.Real.invariant._simp_1_3
Mathlib.NumberTheory.DiophantineApproximation.Basic
βˆ€ {Ξ± : Type u_2} [inst : Zero Ξ±] [inst_1 : OfNat Ξ± 4] [NeZero 4], (4 = 0) = False
CommGroupWithZero.zpow._inherited_default
Mathlib.Algebra.GroupWithZero.Defs
{Gβ‚€ : Type u_2} β†’ (Gβ‚€ β†’ Gβ‚€ β†’ Gβ‚€) β†’ Gβ‚€ β†’ (Gβ‚€ β†’ Gβ‚€) β†’ β„€ β†’ Gβ‚€ β†’ Gβ‚€
MvPolynomial.renameEquiv_trans
Mathlib.Algebra.MvPolynomial.Rename
βˆ€ {Οƒ : Type u_1} {Ο„ : Type u_2} {Ξ± : Type u_3} (R : Type u_4) [inst : CommSemiring R] (e : Οƒ ≃ Ο„) (f : Ο„ ≃ Ξ±), (MvPolynomial.renameEquiv R e).trans (MvPolynomial.renameEquiv R f) = MvPolynomial.renameEquiv R (e.trans f)
Units.instMulDistribMulAction._proof_1
Mathlib.Algebra.GroupWithZero.Action.Units
βˆ€ {M : Type u_1} {Ξ± : Type u_2} [inst : Monoid M] [inst_1 : Monoid Ξ±] [inst_2 : MulDistribMulAction M Ξ±] (m : MΛ£) (b₁ bβ‚‚ : Ξ±), ↑m β€’ (b₁ * bβ‚‚) = ↑m β€’ b₁ * ↑m β€’ bβ‚‚
Polynomial.isOpenMap_comap_C
Mathlib.RingTheory.Spectrum.Prime.Polynomial
βˆ€ {R : Type u_1} [inst : CommRing R], IsOpenMap ⇑(PrimeSpectrum.comap Polynomial.C)
_private.Mathlib.Data.Fintype.EquivFin.0.Function.Embedding.exists_of_card_eq_finset._simp_1_1
Mathlib.Data.Fintype.EquivFin
βˆ€ {Ξ± : Type u_1} {s₁ sβ‚‚ : Finset Ξ±}, (s₁ βŠ† sβ‚‚) = (↑s₁ βŠ† ↑sβ‚‚)
_private.Lean.Elab.Tactic.Simp.0.Lean.Elab.Tactic.elabSimpArgs.match_11
Lean.Elab.Tactic.Simp
(motive : Lean.Elab.Tactic.ElabSimpArgResult β†’ Sort u_1) β†’ (arg : Lean.Elab.Tactic.ElabSimpArgResult) β†’ ((entries : Array Lean.Meta.SimpEntry) β†’ motive (Lean.Elab.Tactic.ElabSimpArgResult.addEntries entries)) β†’ ((fvarId : Lean.FVarId) β†’ motive (Lean.Elab.Tactic.ElabSimpArgResult.addLetToUnfold fvarId)) β†’ ((declName : Lean.Name) β†’ (post : Bool) β†’ motive (Lean.Elab.Tactic.ElabSimpArgResult.addSimproc declName post)) β†’ ((origin : Lean.Meta.Origin) β†’ motive (Lean.Elab.Tactic.ElabSimpArgResult.erase origin)) β†’ ((name : Lean.Name) β†’ motive (Lean.Elab.Tactic.ElabSimpArgResult.eraseSimproc name)) β†’ ((simpExt? : Option Lean.Meta.SimpExtension) β†’ (simprocExt? : Option Lean.Meta.Simp.SimprocExtension) β†’ (h : (simpExt?.isSome || simprocExt?.isSome) = true) β†’ motive (Lean.Elab.Tactic.ElabSimpArgResult.ext simpExt? simprocExt? h)) β†’ (Unit β†’ motive Lean.Elab.Tactic.ElabSimpArgResult.star) β†’ (Unit β†’ motive Lean.Elab.Tactic.ElabSimpArgResult.none) β†’ motive arg
Module.Presentation.cokernelRelations_R
Mathlib.Algebra.Module.Presentation.Cokernel
βˆ€ {A : Type u} [inst : Ring A] {M₁ : Type v₁} {Mβ‚‚ : Type vβ‚‚} [inst_1 : AddCommGroup M₁] [inst_2 : Module A M₁] [inst_3 : AddCommGroup Mβ‚‚] [inst_4 : Module A Mβ‚‚] (presβ‚‚ : Module.Presentation A Mβ‚‚) {f : M₁ β†’β‚—[A] Mβ‚‚} {ΞΉ : Type w₁} {g₁ : ΞΉ β†’ M₁} (data : presβ‚‚.CokernelData f g₁), (presβ‚‚.cokernelRelations data).R = (presβ‚‚.R βŠ• ΞΉ)
BooleanAlgebra.toHImp
Mathlib.Order.BooleanAlgebra.Defs
{Ξ± : Type u} β†’ [self : BooleanAlgebra Ξ±] β†’ HImp Ξ±
DiscreteQuotient.map_continuous
Mathlib.Topology.DiscreteQuotient
βˆ€ {X : Type u_2} {Y : Type u_3} [inst : TopologicalSpace X] [inst_1 : TopologicalSpace Y] {f : C(X, Y)} {A : DiscreteQuotient X} {B : DiscreteQuotient Y} (cond : DiscreteQuotient.LEComap f A B), Continuous (DiscreteQuotient.map f cond)
instIsCancelVAdd
Mathlib.Algebra.Group.Action.Defs
βˆ€ (G : Type u_9) [inst : AddCancelMonoid G], IsCancelVAdd G G
AddCommMonCat.Hom.recOn
Mathlib.Algebra.Category.MonCat.Basic
{A B : AddCommMonCat} β†’ {motive : A.Hom B β†’ Sort u_1} β†’ (t : A.Hom B) β†’ ((hom' : ↑A β†’+ ↑B) β†’ motive { hom' := hom' }) β†’ motive t
_private.Mathlib.Data.Multiset.ZeroCons.0.Multiset.le_singleton._simp_1_1
Mathlib.Data.Multiset.ZeroCons
βˆ€ {Ξ± : Type u_1} (a : Ξ±), {a} = ↑[a]
Lean.Syntax.topDown
Lean.Syntax
Lean.Syntax β†’ optParam Bool false β†’ Lean.Syntax.TopDown
MultilinearMap.uncurry_curryRight
Mathlib.LinearAlgebra.Multilinear.Curry
βˆ€ {R : Type uR} {n : β„•} {M : Fin n.succ β†’ Type v} {Mβ‚‚ : Type vβ‚‚} [inst : CommSemiring R] [inst_1 : (i : Fin n.succ) β†’ AddCommMonoid (M i)] [inst_2 : AddCommMonoid Mβ‚‚] [inst_3 : (i : Fin n.succ) β†’ Module R (M i)] [inst_4 : Module R Mβ‚‚] (f : MultilinearMap R M Mβ‚‚), f.curryRight.uncurryRight = f
Lean.Grind.IntModule.OfNatModule.r
Init.Grind.Module.Envelope
(Ξ± : Type u) β†’ [Lean.Grind.NatModule Ξ±] β†’ Ξ± Γ— Ξ± β†’ Ξ± Γ— Ξ± β†’ Prop
SeparationQuotient.surjective_mk
Mathlib.Topology.Inseparable
βˆ€ {X : Type u_1} [inst : TopologicalSpace X], Function.Surjective SeparationQuotient.mk
Std.Tactic.BVDecide.BVExpr.bitblast.instLawfulVecOperatorRefVecBlastClz
Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Impl.Operations.Clz
βˆ€ {Ξ± : Type} [inst : Hashable Ξ±] [inst_1 : DecidableEq Ξ±], Std.Sat.AIG.LawfulVecOperator Ξ± Std.Sat.AIG.RefVec fun {len} => Std.Tactic.BVDecide.BVExpr.bitblast.blastClz
_private.Mathlib.Computability.PostTuringMachine.0.Turing.TM1to0.trAux.match_1.eq_1
Mathlib.Computability.PostTuringMachine
βˆ€ {Ξ“ : Type u_1} {Ξ› : Type u_2} {Οƒ : Type u_3} (motive : Turing.TM1.Stmt Ξ“ Ξ› Οƒ β†’ Οƒ β†’ Sort u_4) (d : Turing.Dir) (q : Turing.TM1.Stmt Ξ“ Ξ› Οƒ) (v : Οƒ) (h_1 : (d : Turing.Dir) β†’ (q : Turing.TM1.Stmt Ξ“ Ξ› Οƒ) β†’ (v : Οƒ) β†’ motive (Turing.TM1.Stmt.move d q) v) (h_2 : (a : Ξ“ β†’ Οƒ β†’ Ξ“) β†’ (q : Turing.TM1.Stmt Ξ“ Ξ› Οƒ) β†’ (v : Οƒ) β†’ motive (Turing.TM1.Stmt.write a q) v) (h_3 : (a : Ξ“ β†’ Οƒ β†’ Οƒ) β†’ (q : Turing.TM1.Stmt Ξ“ Ξ› Οƒ) β†’ (v : Οƒ) β†’ motive (Turing.TM1.Stmt.load a q) v) (h_4 : (p : Ξ“ β†’ Οƒ β†’ Bool) β†’ (q₁ qβ‚‚ : Turing.TM1.Stmt Ξ“ Ξ› Οƒ) β†’ (v : Οƒ) β†’ motive (Turing.TM1.Stmt.branch p q₁ qβ‚‚) v) (h_5 : (l : Ξ“ β†’ Οƒ β†’ Ξ›) β†’ (v : Οƒ) β†’ motive (Turing.TM1.Stmt.goto l) v) (h_6 : (v : Οƒ) β†’ motive Turing.TM1.Stmt.halt v), (match Turing.TM1.Stmt.move d q, v with | Turing.TM1.Stmt.move d q, v => h_1 d q v | Turing.TM1.Stmt.write a q, v => h_2 a q v | Turing.TM1.Stmt.load a q, v => h_3 a q v | Turing.TM1.Stmt.branch p q₁ qβ‚‚, v => h_4 p q₁ qβ‚‚ v | Turing.TM1.Stmt.goto l, v => h_5 l v | Turing.TM1.Stmt.halt, v => h_6 v) = h_1 d q v
Std.DTreeMap.Internal.Impl.minKeyD_erase_eq_of_not_compare_minKeyD_eq
Std.Data.DTreeMap.Internal.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {instOrd : Ord Ξ±} {t : Std.DTreeMap.Internal.Impl Ξ± Ξ²} [Std.TransOrd Ξ±] (h : t.WF) {k fallback : Ξ±}, (Std.DTreeMap.Internal.Impl.erase k t β‹―).impl.isEmpty = false β†’ Β¬compare k (t.minKeyD fallback) = Ordering.eq β†’ (Std.DTreeMap.Internal.Impl.erase k t β‹―).impl.minKeyD fallback = t.minKeyD fallback
CochainComplex.HomComplex.Cochain.single_v
Mathlib.Algebra.Homology.HomotopyCategory.HomComplex
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Preadditive C] {K L : CochainComplex C β„€} {p q : β„€} (f : K.X p ⟢ L.X q) (n : β„€) (hpq : p + n = q), (CochainComplex.HomComplex.Cochain.single f n).v p q hpq = f
LLVM.CodegenFileType.ctorIdx
Lean.Compiler.IR.LLVMBindings
LLVM.CodegenFileType β†’ β„•
HeytingAlgebra.ctorIdx
Mathlib.Order.Heyting.Basic
{Ξ± : Type u_4} β†’ HeytingAlgebra Ξ± β†’ β„•
frequently_gt_nhds
Mathlib.Topology.Order.LeftRight
βˆ€ {Ξ± : Type u_1} [inst : TopologicalSpace Ξ±] [inst_1 : Preorder Ξ±] (a : Ξ±) [(nhdsWithin a (Set.Ioi a)).NeBot], βˆƒαΆ  (x : Ξ±) in nhds a, a < x
_private.Init.Data.SInt.Bitwise.0.Int8.not_eq_comm._simp_1_1
Init.Data.SInt.Bitwise
βˆ€ {a b : Int8}, (a = b) = (a.toBitVec = b.toBitVec)
Set.biUnionEqSigmaOfDisjoint.eq_1
Mathlib.Data.Set.Pairwise.Lattice
βˆ€ {Ξ± : Type u_1} {ΞΉ : Type u_2} {s : Set ΞΉ} {f : ΞΉ β†’ Set Ξ±} (h : s.PairwiseDisjoint f), Set.biUnionEqSigmaOfDisjoint h = (Equiv.setCongr β‹―).trans (Set.unionEqSigmaOfDisjoint β‹―)
Relation.map_map
Mathlib.Logic.Relation
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} {Ξ΄ : Type u_4} {Ξ΅ : Type u_5} {ΞΆ : Type u_6} (r : Ξ± β†’ Ξ² β†’ Prop) (f₁ : Ξ± β†’ Ξ³) (g₁ : Ξ² β†’ Ξ΄) (fβ‚‚ : Ξ³ β†’ Ξ΅) (gβ‚‚ : Ξ΄ β†’ ΞΆ), Relation.Map (Relation.Map r f₁ g₁) fβ‚‚ gβ‚‚ = Relation.Map r (fβ‚‚ ∘ f₁) (gβ‚‚ ∘ g₁)
MeasureTheory.measure_eq_measure_smaller_of_between_null_diff
Mathlib.MeasureTheory.Measure.MeasureSpace
βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} {s₁ sβ‚‚ s₃ : Set Ξ±}, s₁ βŠ† sβ‚‚ β†’ sβ‚‚ βŠ† s₃ β†’ ΞΌ (s₃ \ s₁) = 0 β†’ ΞΌ s₁ = ΞΌ sβ‚‚
Subgroup.orderIsoCon
Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} β†’ [inst : Group G] β†’ { N // N.Normal } ≃o Con G
CommMonCat.forgetβ‚‚CreatesLimit._proof_11
Mathlib.Algebra.Category.MonCat.Limits
βˆ€ {J : Type u_3} [inst : CategoryTheory.Category.{u_1, u_3} J] (F : CategoryTheory.Functor J CommMonCat) [inst_1 : Small.{u_2, max u_2 u_3} ↑(F.comp (CategoryTheory.forget CommMonCat)).sections] (x : CategoryTheory.Limits.Cone F), (CategoryTheory.forgetβ‚‚ CommMonCat MonCat).map { hom' := { toFun := fun v => EquivLike.coe (equivShrink ↑((F.comp (CategoryTheory.forgetβ‚‚ CommMonCat MonCat)).comp (CategoryTheory.forget MonCat)).sections) ⟨fun j => ((CategoryTheory.forget MonCat).mapCone ((CategoryTheory.forgetβ‚‚ CommMonCat MonCat).mapCone x)).Ο€.app j v, β‹―βŸ©, map_one' := β‹―, map_mul' := β‹― } } = (CategoryTheory.forgetβ‚‚ CommMonCat MonCat).map { hom' := { toFun := fun v => EquivLike.coe (equivShrink ↑((F.comp (CategoryTheory.forgetβ‚‚ CommMonCat MonCat)).comp (CategoryTheory.forget MonCat)).sections) ⟨fun j => ((CategoryTheory.forget MonCat).mapCone ((CategoryTheory.forgetβ‚‚ CommMonCat MonCat).mapCone x)).Ο€.app j v, β‹―βŸ©, map_one' := β‹―, map_mul' := β‹― } }
_private.Std.Data.DHashMap.Internal.Defs.0.Std.DHashMap.Internal.Rawβ‚€.expand.go.induct
Std.Data.DHashMap.Internal.WF
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} [inst : Hashable Ξ±] (motive : β„• β†’ Array (Std.DHashMap.Internal.AssocList Ξ± Ξ²) β†’ { d // 0 < d.size } β†’ Prop), (βˆ€ (i : β„•) (source : Array (Std.DHashMap.Internal.AssocList Ξ± Ξ²)) (target : { d // 0 < d.size }) (h : i < source.size), have es := source[i]; have source_1 := source.set i Std.DHashMap.Internal.AssocList.nil h; have target_1 := Std.DHashMap.Internal.AssocList.foldl (Std.DHashMap.Internal.Rawβ‚€.reinsertAux hash) target es; motive (i + 1) source_1 target_1 β†’ motive i source target) β†’ (βˆ€ (i : β„•) (source : Array (Std.DHashMap.Internal.AssocList Ξ± Ξ²)) (target : { d // 0 < d.size }), Β¬i < source.size β†’ motive i source target) β†’ βˆ€ (i : β„•) (source : Array (Std.DHashMap.Internal.AssocList Ξ± Ξ²)) (target : { d // 0 < d.size }), motive i source target
_private.Batteries.Data.RBMap.Lemmas.0.Batteries.RBNode.Ordered.memP_iff_lowerBound?.match_1_5
Batteries.Data.RBMap.Lemmas
βˆ€ (motive : Ordering.eq = Ordering.lt β†’ Prop) (x : Ordering.eq = Ordering.lt), motive x
ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl.congr_simp
Mathlib.Analysis.Calculus.Implicit
βˆ€ {π•œ : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [inst : NontriviallyNormedField π•œ] [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] [inst_5 : NormedAddCommGroup G] [inst_6 : NormedSpace π•œ G] [inst_7 : CompleteSpace E] [inst_8 : CompleteSpace (F Γ— G)] (f f_1 : E β†’L[π•œ] F) (e_f : f = f_1) (g g_1 : E β†’L[π•œ] G) (e_g : g = g_1) (hf : LinearMap.range f = ⊀) (hg : LinearMap.range g = ⊀) (hfg : IsCompl (LinearMap.ker f) (LinearMap.ker g)), f.equivProdOfSurjectiveOfIsCompl g hf hg hfg = f_1.equivProdOfSurjectiveOfIsCompl g_1 β‹― β‹― β‹―
Std.Sat.AIG.RelabelNat.State.noConfusionType
Std.Sat.AIG.RelabelNat
{Ξ± : Type} β†’ [inst : DecidableEq Ξ±] β†’ [inst_1 : Hashable Ξ±] β†’ {decls : Array (Std.Sat.AIG.Decl Ξ±)} β†’ {idx : β„•} β†’ Sort u β†’ Std.Sat.AIG.RelabelNat.State Ξ± decls idx β†’ Std.Sat.AIG.RelabelNat.State Ξ± decls idx β†’ Sort u
hasSum_nat_jacobiTheta
Mathlib.NumberTheory.ModularForms.JacobiTheta.OneVariable
βˆ€ {Ο„ : β„‚}, 0 < Ο„.im β†’ HasSum (fun n => Complex.exp (↑Real.pi * Complex.I * (↑n + 1) ^ 2 * Ο„)) ((jacobiTheta Ο„ - 1) / 2)
Std.Sat.AIG.denote_idx_gate
Std.Sat.AIG.Lemmas
βˆ€ {Ξ± : Type} [inst : Hashable Ξ±] [inst_1 : DecidableEq Ξ±] {start : β„•} {assign : Ξ± β†’ Bool} {invert : Bool} {lhs rhs : Std.Sat.AIG.Fanin} {aig : Std.Sat.AIG Ξ±} {hstart : start < aig.decls.size} (h : aig.decls[start] = Std.Sat.AIG.Decl.gate lhs rhs), ⟦assign, { aig := aig, ref := { gate := start, invert := invert, hgate := hstart } }⟧ = (⟦assign, { aig := aig, ref := { gate := lhs.gate, invert := lhs.invert, hgate := β‹― } }⟧ && ⟦assign, { aig := aig, ref := { gate := rhs.gate, invert := rhs.invert, hgate := β‹― } }⟧ ^^ invert)
TopologicalSpace.DiscreteTopology.metrizableSpace
Mathlib.Topology.Metrizable.Basic
βˆ€ {X : Type u_2} [inst : TopologicalSpace X] [DiscreteTopology X], TopologicalSpace.MetrizableSpace X
CategoryTheory.Limits.isLimitOfHasBinaryProductOfPreservesLimit
Mathlib.CategoryTheory.Limits.Preserves.Shapes.BinaryProducts
{C : Type u₁} β†’ [inst : CategoryTheory.Category.{v₁, u₁} C] β†’ {D : Type uβ‚‚} β†’ [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] β†’ (G : CategoryTheory.Functor C D) β†’ (X Y : C) β†’ [inst_2 : CategoryTheory.Limits.HasBinaryProduct X Y] β†’ [CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.pair X Y) G] β†’ CategoryTheory.Limits.IsLimit (CategoryTheory.Limits.BinaryFan.mk (G.map CategoryTheory.Limits.prod.fst) (G.map CategoryTheory.Limits.prod.snd))
Real.fourierIntegralInv_comp_linearIsometry
Mathlib.Analysis.Fourier.FourierTransform
βˆ€ {E : Type u_1} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace β„‚ E] {V : Type u_2} [inst_2 : NormedAddCommGroup V] [inst_3 : InnerProductSpace ℝ V] [inst_4 : MeasurableSpace V] [inst_5 : BorelSpace V] {W : Type u_3} [inst_6 : NormedAddCommGroup W] [inst_7 : InnerProductSpace ℝ W] [inst_8 : MeasurableSpace W] [inst_9 : BorelSpace W] [inst_10 : FiniteDimensional ℝ W] [inst_11 : FiniteDimensional ℝ V] (A : W ≃ₗᡒ[ℝ] V) (f : V β†’ E) (w : W), FourierTransformInv.fourierInv (f ∘ ⇑A) w = FourierTransformInv.fourierInv f (A w)
convexHull_empty_iff
Mathlib.Analysis.Convex.Hull
βˆ€ {π•œ : Type u_1} {E : Type u_2} [inst : Semiring π•œ] [inst_1 : PartialOrder π•œ] [inst_2 : AddCommMonoid E] [inst_3 : Module π•œ E] {s : Set E}, (convexHull π•œ) s = βˆ… ↔ s = βˆ…
CategoryTheory.ShortComplex.Splitting.mk._flat_ctor
Mathlib.Algebra.Homology.ShortComplex.Exact
{C : Type u_1} β†’ [inst : CategoryTheory.Category.{u_3, u_1} C] β†’ [inst_1 : CategoryTheory.Preadditive C] β†’ {S : CategoryTheory.ShortComplex C} β†’ (r : S.Xβ‚‚ ⟢ S.X₁) β†’ (s : S.X₃ ⟢ S.Xβ‚‚) β†’ autoParam (CategoryTheory.CategoryStruct.comp S.f r = CategoryTheory.CategoryStruct.id S.X₁) CategoryTheory.ShortComplex.Splitting.f_r._autoParam β†’ autoParam (CategoryTheory.CategoryStruct.comp s S.g = CategoryTheory.CategoryStruct.id S.X₃) CategoryTheory.ShortComplex.Splitting.s_g._autoParam β†’ autoParam (CategoryTheory.CategoryStruct.comp r S.f + CategoryTheory.CategoryStruct.comp S.g s = CategoryTheory.CategoryStruct.id S.Xβ‚‚) CategoryTheory.ShortComplex.Splitting.id._autoParam β†’ S.Splitting