name
string
module
string
type
string
ContinuousMultilinearMap.norm_iteratedFDerivComponent_le
Mathlib.Analysis.Normed.Module.Multilinear.Basic
βˆ€ {π•œ : Type u} {ΞΉ : Type v} {E₁ : ΞΉ β†’ Type wE₁} {G : Type wG} [inst : NontriviallyNormedField π•œ] [inst_1 : (i : ΞΉ) β†’ SeminormedAddCommGroup (E₁ i)] [inst_2 : (i : ΞΉ) β†’ NormedSpace π•œ (E₁ i)] [inst_3 : SeminormedAddCommGroup G] [inst_4 : NormedSpace π•œ G] [inst_5 : Fintype ΞΉ] {Ξ± : Type u_1} [inst_6 : Fintype Ξ±] (f : ContinuousMultilinearMap π•œ E₁ G) {s : Set ΞΉ} (e : Ξ± ≃ ↑s) [inst_7 : DecidablePred fun x => x ∈ s] (x : (i : ΞΉ) β†’ E₁ i), β€–(f.iteratedFDerivComponent e) fun x_1 => x ↑x_1β€– ≀ β€–fβ€– * β€–xβ€– ^ (Fintype.card ΞΉ - Fintype.card Ξ±)
small_iff
Mathlib.Logic.Small.Defs
βˆ€ (Ξ± : Type v), Small.{w, v} Ξ± ↔ βˆƒ S, Nonempty (Ξ± ≃ S)
_private.Mathlib.Algebra.Order.Star.Basic.0.MulOpposite.instStarOrderedRing._simp_1
Mathlib.Algebra.Order.Star.Basic
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {ΞΉ : Sort u_4} (g : Ξ± β†’ Ξ²) (f : ΞΉ β†’ Ξ±), g '' Set.range f = Set.range fun x => g (f x)
Mathlib.Tactic.Widget.homType?
Mathlib.Tactic.Widget.CommDiag
Lean.Expr β†’ Option (Lean.Expr Γ— Lean.Expr)
MulActionWithZero.toMulAction
Mathlib.Algebra.GroupWithZero.Action.Defs
{Mβ‚€ : Type u_2} β†’ {A : Type u_7} β†’ {inst : MonoidWithZero Mβ‚€} β†’ {inst_1 : Zero A} β†’ [self : MulActionWithZero Mβ‚€ A] β†’ MulAction Mβ‚€ A
Vector.set._proof_1
Init.Data.Vector.Basic
βˆ€ {Ξ± : Type u_1} {n : β„•} (xs : Vector Ξ± n), βˆ€ i < n, i < xs.toArray.size
Mathlib.Tactic.CC.EntryExpr.noConfusionType
Mathlib.Tactic.CC.Datatypes
Sort u β†’ Mathlib.Tactic.CC.EntryExpr β†’ Mathlib.Tactic.CC.EntryExpr β†’ Sort u
subset_refl
Mathlib.Order.RelClasses
βˆ€ {Ξ± : Type u} [inst : HasSubset Ξ±] [IsRefl Ξ± fun x1 x2 => x1 βŠ† x2] (a : Ξ±), a βŠ† a
Lean.Meta.Grind.AC.instInhabitedEqCnstr
Lean.Meta.Tactic.Grind.AC.Types
Inhabited Lean.Meta.Grind.AC.EqCnstr
MeromorphicOn.mono_set
Mathlib.Analysis.Meromorphic.Basic
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {f : π•œ β†’ E} {U : Set π•œ}, MeromorphicOn f U β†’ βˆ€ {V : Set π•œ}, V βŠ† U β†’ MeromorphicOn f V
Std.Tactic.BVDecide.BVExpr.bitblast.blastConst._proof_4
Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Impl.Const
βˆ€ {w : β„•}, βˆ€ curr ≀ w, Β¬curr < w β†’ curr = w
Lean.Meta.Config.assignSyntheticOpaque
Lean.Meta.Basic
Lean.Meta.Config β†’ Bool
IO.Error.permissionDenied.inj
Init.System.IOError
βˆ€ {filename : Option String} {osCode : UInt32} {details : String} {filename_1 : Option String} {osCode_1 : UInt32} {details_1 : String}, IO.Error.permissionDenied filename osCode details = IO.Error.permissionDenied filename_1 osCode_1 details_1 β†’ filename = filename_1 ∧ osCode = osCode_1 ∧ details = details_1
Fin.natAdd_natAdd
Init.Data.Fin.Lemmas
βˆ€ (m n : β„•) {p : β„•} (i : Fin p), Fin.natAdd m (Fin.natAdd n i) = Fin.cast β‹― (Fin.natAdd (m + n) i)
AnalyticWithinAt.exists_hasFTaylorSeriesUpToOn
Mathlib.Analysis.Calculus.FDeriv.Analytic
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type v} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] {f : E β†’ F} {x : E} {s : Set E} [CompleteSpace F] (n : WithTop β„•βˆž), AnalyticWithinAt π•œ f s x β†’ βˆƒ u ∈ nhdsWithin x (insert x s), βˆƒ p, HasFTaylorSeriesUpToOn n f p u ∧ βˆ€ (i : β„•), AnalyticOn π•œ (fun x => p x i) u
MeasureTheory.AEEqFun.coeFn_posPart
Mathlib.MeasureTheory.Function.AEEqFun
βˆ€ {Ξ± : Type u_1} {Ξ³ : Type u_3} [inst : MeasurableSpace Ξ±] {ΞΌ : MeasureTheory.Measure Ξ±} [inst_1 : TopologicalSpace Ξ³] [inst_2 : LinearOrder Ξ³] [inst_3 : OrderClosedTopology Ξ³] [inst_4 : Zero Ξ³] (f : Ξ± β†’β‚˜[ΞΌ] Ξ³), ↑f.posPart =ᡐ[ΞΌ] fun a => max (↑f a) 0
CategoryTheory.Bicategory.leftUnitor
Mathlib.CategoryTheory.Bicategory.Basic
{B : Type u} β†’ [self : CategoryTheory.Bicategory B] β†’ {a b : B} β†’ (f : a ⟢ b) β†’ CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.id a) f β‰… f
CategoryTheory.shiftFunctorAdd'.eq_1
Mathlib.CategoryTheory.Shift.Basic
βˆ€ (C : Type u) {A : Type u_1} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : AddMonoid A] [inst_2 : CategoryTheory.HasShift C A] (i j k : A) (h : i + j = k), CategoryTheory.shiftFunctorAdd' C i j k h = CategoryTheory.eqToIso β‹― β‰ͺ≫ CategoryTheory.shiftFunctorAdd C i j
DivisibleHull.mk_add_mk
Mathlib.GroupTheory.DivisibleHull
βˆ€ {M : Type u_1} [inst : AddCommMonoid M] {m1 m2 : M} {s1 s2 : β„•+}, DivisibleHull.mk m1 s1 + DivisibleHull.mk m2 s2 = DivisibleHull.mk (↑s2 β€’ m1 + ↑s1 β€’ m2) (s1 * s2)
MulActionHom.instCommSemiring
Mathlib.GroupTheory.GroupAction.Hom
{M : Type u_2} β†’ {N : Type u_3} β†’ {X : Type u_4} β†’ {Y : Type u_5} β†’ {Οƒ : M β†’ N} β†’ [inst : SMul M X] β†’ [inst_1 : Monoid N] β†’ [inst_2 : CommSemiring Y] β†’ [inst_3 : MulSemiringAction N Y] β†’ CommSemiring (X β†’β‚‘[Οƒ] Y)
LawfulBitraversable.mk
Mathlib.Control.Bitraversable.Basic
βˆ€ {t : Type u β†’ Type u β†’ Type u} [inst : Bitraversable t] [toLawfulBifunctor : LawfulBifunctor t], (βˆ€ {Ξ± Ξ² : Type u} (x : t Ξ± Ξ²), bitraverse pure pure x = pure x) β†’ (βˆ€ {F G : Type u β†’ Type u} [inst_1 : Applicative F] [inst_2 : Applicative G] [LawfulApplicative F] [LawfulApplicative G] {Ξ± Ξ±' Ξ² Ξ²' Ξ³ Ξ³' : Type u} (f : Ξ² β†’ F Ξ³) (f' : Ξ²' β†’ F Ξ³') (g : Ξ± β†’ G Ξ²) (g' : Ξ±' β†’ G Ξ²') (x : t Ξ± Ξ±'), bitraverse (Functor.Comp.mk ∘ Functor.map f ∘ g) (Functor.Comp.mk ∘ Functor.map f' ∘ g') x = Functor.Comp.mk (bitraverse f f' <$> bitraverse g g' x)) β†’ (βˆ€ {Ξ± Ξ±' Ξ² Ξ²' : Type u} (f : Ξ± β†’ Ξ²) (f' : Ξ±' β†’ Ξ²') (x : t Ξ± Ξ±'), bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x)) β†’ (βˆ€ {F G : Type u β†’ Type u} [inst_1 : Applicative F] [inst_2 : Applicative G] [LawfulApplicative F] [LawfulApplicative G] (Ξ· : ApplicativeTransformation F G) {Ξ± Ξ±' Ξ² Ξ²' : Type u} (f : Ξ± β†’ F Ξ²) (f' : Ξ±' β†’ F Ξ²') (x : t Ξ± Ξ±'), (fun {Ξ±} => Ξ·.app Ξ±) (bitraverse f f' x) = bitraverse ((fun {Ξ±} => Ξ·.app Ξ±) ∘ f) ((fun {Ξ±} => Ξ·.app Ξ±) ∘ f') x) β†’ LawfulBitraversable t
unitary.linearIsometryEquiv_coe_symm_apply
Mathlib.Analysis.InnerProductSpace.Adjoint
βˆ€ {π•œ : Type u_1} [inst : RCLike π•œ] {H : Type u_5} [inst_1 : NormedAddCommGroup H] [inst_2 : InnerProductSpace π•œ H] [inst_3 : CompleteSpace H] (e : H ≃ₗᡒ[π•œ] H), ↑(Unitary.linearIsometryEquiv.symm e) = ↑{ toLinearEquiv := e.toLinearEquiv, continuous_toFun := β‹―, continuous_invFun := β‹― }
CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso
Mathlib.CategoryTheory.Triangulated.Opposite.Triangle
(C : Type u_1) β†’ [inst : CategoryTheory.Category.{u_2, u_1} C] β†’ [inst_1 : CategoryTheory.HasShift C β„€] β†’ CategoryTheory.Functor.id (CategoryTheory.Pretriangulated.Triangle C)α΅’α΅– β‰… (CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor C).comp (CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse C)
_private.Mathlib.Algebra.Module.ZLattice.Summable.0.ZLattice.sum_piFinset_Icc_rpow_le._proof_1_11
Mathlib.Algebra.Module.ZLattice.Summable
βˆ€ {ΞΉ : Type u_1} [Fintype ΞΉ] (k : β„•), Β¬2 * k + 3 ≀ 3 * (k + 1) β†’ False
NonUnitalRingHom.rangeRestrict_surjective
Mathlib.RingTheory.NonUnitalSubring.Basic
βˆ€ {R : Type u} {S : Type v} [inst : NonUnitalNonAssocRing R] [inst_1 : NonUnitalNonAssocRing S] (f : R β†’β‚™+* S), Function.Surjective ⇑f.rangeRestrict
LowerSet.sdiff_lt_left._simp_1
Mathlib.Order.UpperLower.Closure
βˆ€ {Ξ± : Type u_1} [inst : Preorder Ξ±] {s : LowerSet Ξ±} {t : Set Ξ±}, (s.sdiff t < s) = Β¬Disjoint (↑s) t
GrpCat.instCreatesLimitsOfSizeUliftFunctor._proof_1
Mathlib.Algebra.Category.Grp.Ulift
βˆ€ {J : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} J] {x : CategoryTheory.Functor J GrpCat}, CategoryTheory.Limits.HasLimit x
WType._sizeOf_1
Mathlib.Data.W.Basic
{Ξ± : Type u_1} β†’ {Ξ² : Ξ± β†’ Type u_2} β†’ [SizeOf Ξ±] β†’ [(a : Ξ±) β†’ SizeOf (Ξ² a)] β†’ WType Ξ² β†’ β„•
CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetObj._proof_6
Mathlib.CategoryTheory.Limits.Constructions.Filtered
βˆ€ {Ξ± : Type u_1} {X Y Z : (Finset (CategoryTheory.Discrete Ξ±))α΅’α΅–} (f : X ⟢ Y) (g : Y ⟢ Z) (y : β†₯(Opposite.unop Z)), ↑y ∈ Opposite.unop X
Function.LeftInverse.rightInverse_of_surjective
Mathlib.Logic.Function.Basic
βˆ€ {Ξ± : Sort u_1} {Ξ² : Sort u_2} {f : Ξ± β†’ Ξ²} {g : Ξ² β†’ Ξ±}, Function.LeftInverse f g β†’ Function.Surjective g β†’ Function.RightInverse f g
real_inner_I_smul_self
Mathlib.Analysis.InnerProductSpace.Basic
βˆ€ (π•œ : Type u_1) {E : Type u_2} [inst : RCLike π•œ] [inst_1 : SeminormedAddCommGroup E] [inst_2 : InnerProductSpace π•œ E] (x : E), inner ℝ x (RCLike.I β€’ x) = 0
BooleanSubalgebra.map._proof_3
Mathlib.Order.BooleanSubalgebra
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_1} [inst : BooleanAlgebra Ξ±] [inst_1 : BooleanAlgebra Ξ²] (f : BoundedLatticeHom Ξ± Ξ²) (L : BooleanSubalgebra Ξ±) {a : Ξ²}, a ∈ ⇑f '' ↑L β†’ aᢜ ∈ ⇑f '' ↑L
CategoryTheory.sectionsFunctorNatIsoCoyoneda
Mathlib.CategoryTheory.Yoneda
{C : Type u₁} β†’ [inst : CategoryTheory.Category.{v₁, u₁} C] β†’ (X : Type (max u₁ uβ‚‚)) β†’ [Unique X] β†’ CategoryTheory.Functor.sectionsFunctor C β‰… CategoryTheory.coyoneda.obj (Opposite.op ((CategoryTheory.Functor.const C).obj X))
WithOne
Mathlib.Algebra.Group.WithOne.Defs
Type u_1 β†’ Type u_1
Representation.free
Mathlib.RepresentationTheory.Basic
(k : Type u_6) β†’ (G : Type u_7) β†’ [inst : CommSemiring k] β†’ [inst_1 : Monoid G] β†’ (Ξ± : Type u_8) β†’ Representation k G (Ξ± β†’β‚€ G β†’β‚€ k)
Lean.Parser.Tactic.Grind.mbtc
Init.Grind.Interactive
Lean.ParserDescr
Primrec.subtype_val_iff
Mathlib.Computability.Primrec
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : Primcodable Ξ±] [inst_1 : Primcodable Ξ²] {p : Ξ² β†’ Prop} [inst_2 : DecidablePred p] {hp : PrimrecPred p} {f : Ξ± β†’ Subtype p}, (Primrec fun a => ↑(f a)) ↔ Primrec f
Lean.Grind.CommRing.Poly.mulMonC.go
Init.Grind.Ring.CommSolver
β„€ β†’ Lean.Grind.CommRing.Mon β†’ β„• β†’ Lean.Grind.CommRing.Poly β†’ Lean.Grind.CommRing.Poly
_private.Init.Data.Nat.Power2.0.Nat.nextPowerOfTwo.go._unary.eq_def
Init.Data.Nat.Power2
βˆ€ (n : β„•) (_x : (power : β„•) Γ—' power > 0), Nat.nextPowerOfTwo.go._unary✝ n _x = PSigma.casesOn _x fun power h => if power < n then Nat.nextPowerOfTwo.go._unary✝¹ n ⟨power * 2, β‹―βŸ© else power
Equiv.simpleGraph._proof_1
Mathlib.Combinatorics.SimpleGraph.Maps
βˆ€ {V : Type u_1} {W : Type u_2} (e : V ≃ W) (x : SimpleGraph V), SimpleGraph.comap (⇑e.symm ∘ ⇑e) x = x
Std.DHashMap.Raw.Const.all_eq_false_iff_exists_mem_get
Std.Data.DHashMap.RawLemmas
βˆ€ {Ξ± : Type u} [inst : BEq Ξ±] [inst_1 : Hashable Ξ±] {Ξ² : Type v} {m : Std.DHashMap.Raw Ξ± fun x => Ξ²} [LawfulBEq Ξ±] {p : Ξ± β†’ Ξ² β†’ Bool}, m.WF β†’ (m.all p = false ↔ βˆƒ a, βˆƒ (h : a ∈ m), p a (Std.DHashMap.Raw.Const.get m a h) = false)
Lean.Elab.Tactic.ElimApp.Result.motive
Lean.Elab.Tactic.Induction
Lean.Elab.Tactic.ElimApp.Result β†’ Lean.MVarId
ModularForm.coe_eq_zero_iff._simp_1
Mathlib.NumberTheory.ModularForms.Basic
βˆ€ {Ξ“ : Subgroup (GL (Fin 2) ℝ)} {k : β„€} (f : ModularForm Ξ“ k), (⇑f = 0) = (f = 0)
Submodule.subtypeβ‚—α΅’_toContinuousLinearMap
Mathlib.Analysis.Normed.Operator.LinearIsometry
βˆ€ {E : Type u_5} [inst : SeminormedAddCommGroup E] {R' : Type u_11} [inst_1 : Ring R'] [inst_2 : Module R' E] (p : Submodule R' E), p.subtypeβ‚—α΅’.toContinuousLinearMap = p.subtypeL
Differential.logDeriv.eq_1
Mathlib.FieldTheory.Differential.Basic
βˆ€ {R : Type u_1} [inst : Field R] [inst_1 : Differential R] (a : R), Differential.logDeriv a = aβ€² / a
Array.toList_mapFinIdxM
Init.Data.Array.MapIdx
βˆ€ {m : Type u_1 β†’ Type u_2} {Ξ± : Type u_3} {Ξ² : Type u_1} [inst : Monad m] [LawfulMonad m] {xs : Array Ξ±} {f : (i : β„•) β†’ Ξ± β†’ i < xs.size β†’ m Ξ²}, Array.toList <$> xs.mapFinIdxM f = xs.toList.mapFinIdxM f
IsCompact.exists_isGLB
Mathlib.Topology.Order.Compact
βˆ€ {Ξ± : Type u_2} [inst : LinearOrder Ξ±] [inst_1 : TopologicalSpace Ξ±] [ClosedIicTopology Ξ±] {s : Set Ξ±}, IsCompact s β†’ s.Nonempty β†’ βˆƒ x ∈ s, IsGLB s x
_private.Init.Data.Nat.Basic.0.Nat.exists_eq_succ_of_ne_zero.match_1_1
Init.Data.Nat.Basic
βˆ€ (motive : (x : β„•) β†’ x β‰  0 β†’ Prop) (x : β„•) (x_1 : x β‰  0), (βˆ€ (n : β„•) (x : n + 1 β‰  0), motive n.succ x) β†’ motive x x_1
CategoryTheory.ShortComplex.SnakeInput.Hom.comp
Mathlib.Algebra.Homology.ShortComplex.SnakeLemma
{C : Type u_1} β†’ [inst : CategoryTheory.Category.{u_2, u_1} C] β†’ [inst_1 : CategoryTheory.Abelian C] β†’ {S₁ Sβ‚‚ S₃ : CategoryTheory.ShortComplex.SnakeInput C} β†’ S₁.Hom Sβ‚‚ β†’ Sβ‚‚.Hom S₃ β†’ S₁.Hom S₃
CategoryTheory.ReflPrefunctor.Β«_aux_Mathlib_Combinatorics_Quiver_ReflQuiver___macroRules_CategoryTheory_ReflPrefunctor_term_β₯€rq__1Β»
Mathlib.Combinatorics.Quiver.ReflQuiver
Lean.Macro
Nat.Pseudoperfect.eq_1
Mathlib.NumberTheory.FactorisationProperties
βˆ€ (n : β„•), n.Pseudoperfect = (0 < n ∧ βˆƒ s βŠ† n.properDivisors, βˆ‘ i ∈ s, i = n)
SetTheory.PGame.leftResponse._proof_1
Mathlib.SetTheory.PGame.Order
βˆ€ {x : SetTheory.PGame}, 0 ≀ x β†’ βˆ€ (j : x.RightMoves), βˆƒ i, 0 ≀ (x.moveRight j).moveLeft i
Finset.smul_sum
Mathlib.Algebra.BigOperators.GroupWithZero.Action
βˆ€ {M : Type u_1} {N : Type u_2} {Ξ³ : Type u_3} [inst : AddCommMonoid N] [inst_1 : DistribSMul M N] {r : M} {f : Ξ³ β†’ N} {s : Finset Ξ³}, r β€’ βˆ‘ x ∈ s, f x = βˆ‘ x ∈ s, r β€’ f x
OrderMonoidIso.val_inv_unitsWithZero_symm_apply
Mathlib.Algebra.Order.Hom.MonoidWithZero
βˆ€ {Ξ± : Type u_6} [inst : Group Ξ±] [inst_1 : Preorder Ξ±] (a : Ξ±), ↑(OrderMonoidIso.unitsWithZero.symm a)⁻¹ = (↑a)⁻¹
ContMDiffOn.clm_bundle_applyβ‚‚
Mathlib.Geometry.Manifold.VectorBundle.Hom
βˆ€ {π•œ : Type u_1} {B : Type u_2} {F₁ : Type u_3} {Fβ‚‚ : Type u_4} {F₃ : Type u_5} {M : Type u_6} [inst : NontriviallyNormedField π•œ] {n : WithTop β„•βˆž} {E₁ : B β†’ Type u_7} [inst_1 : (x : B) β†’ AddCommGroup (E₁ x)] [inst_2 : (x : B) β†’ Module π•œ (E₁ x)] [inst_3 : NormedAddCommGroup F₁] [inst_4 : NormedSpace π•œ F₁] [inst_5 : TopologicalSpace (Bundle.TotalSpace F₁ E₁)] [inst_6 : (x : B) β†’ TopologicalSpace (E₁ x)] {Eβ‚‚ : B β†’ Type u_8} [inst_7 : (x : B) β†’ AddCommGroup (Eβ‚‚ x)] [inst_8 : (x : B) β†’ Module π•œ (Eβ‚‚ x)] [inst_9 : NormedAddCommGroup Fβ‚‚] [inst_10 : NormedSpace π•œ Fβ‚‚] [inst_11 : TopologicalSpace (Bundle.TotalSpace Fβ‚‚ Eβ‚‚)] [inst_12 : (x : B) β†’ TopologicalSpace (Eβ‚‚ x)] {E₃ : B β†’ Type u_9} [inst_13 : (x : B) β†’ AddCommGroup (E₃ x)] [inst_14 : (x : B) β†’ Module π•œ (E₃ x)] [inst_15 : NormedAddCommGroup F₃] [inst_16 : NormedSpace π•œ F₃] [inst_17 : TopologicalSpace (Bundle.TotalSpace F₃ E₃)] [inst_18 : (x : B) β†’ TopologicalSpace (E₃ x)] {EB : Type u_10} [inst_19 : NormedAddCommGroup EB] [inst_20 : NormedSpace π•œ EB] {HB : Type u_11} [inst_21 : TopologicalSpace HB] {IB : ModelWithCorners π•œ EB HB} [inst_22 : TopologicalSpace B] [inst_23 : ChartedSpace HB B] {EM : Type u_12} [inst_24 : NormedAddCommGroup EM] [inst_25 : NormedSpace π•œ EM] {HM : Type u_13} [inst_26 : TopologicalSpace HM] {IM : ModelWithCorners π•œ EM HM} [inst_27 : TopologicalSpace M] [inst_28 : ChartedSpace HM M] [inst_29 : FiberBundle F₁ E₁] [inst_30 : VectorBundle π•œ F₁ E₁] [inst_31 : FiberBundle Fβ‚‚ Eβ‚‚] [inst_32 : VectorBundle π•œ Fβ‚‚ Eβ‚‚] [inst_33 : FiberBundle F₃ E₃] [inst_34 : β‹―], β‹―
CategoryTheory.Limits.BinaryCofan.isColimitMk._proof_2
Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] {X Y W : C} {inl : X ⟢ W} {inr : Y ⟢ W} (desc : (s : CategoryTheory.Limits.BinaryCofan X Y) β†’ W ⟢ s.pt), (βˆ€ (s : CategoryTheory.Limits.BinaryCofan X Y) (m : W ⟢ s.pt), CategoryTheory.CategoryStruct.comp inl m = s.inl β†’ CategoryTheory.CategoryStruct.comp inr m = s.inr β†’ m = desc s) β†’ βˆ€ (s : CategoryTheory.Limits.Cocone (CategoryTheory.Limits.pair X Y)) (m : (CategoryTheory.Limits.BinaryCofan.mk inl inr).pt ⟢ s.pt), (βˆ€ (j : CategoryTheory.Discrete CategoryTheory.Limits.WalkingPair), CategoryTheory.CategoryStruct.comp ((CategoryTheory.Limits.BinaryCofan.mk inl inr).ΞΉ.app j) m = s.ΞΉ.app j) β†’ m = desc s
Finsupp.lsingle_range_le_ker_lapply
Mathlib.LinearAlgebra.Finsupp.Span
βˆ€ {Ξ± : Type u_1} {M : Type u_2} {R : Type u_5} [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M] (s t : Set Ξ±), Disjoint s t β†’ ⨆ a ∈ s, LinearMap.range (Finsupp.lsingle a) ≀ β¨… a ∈ t, LinearMap.ker (Finsupp.lapply a)
CategoryTheory.ShortComplex.homMk_τ₁
Mathlib.Algebra.Homology.ShortComplex.Basic
βˆ€ {C : Type u_1} [inst : CategoryTheory.Category.{u_4, u_1} C] [inst_1 : CategoryTheory.Limits.HasZeroMorphisms C] {S₁ Sβ‚‚ : CategoryTheory.ShortComplex C} (τ₁ : S₁.X₁ ⟢ Sβ‚‚.X₁) (Ο„β‚‚ : S₁.Xβ‚‚ ⟢ Sβ‚‚.Xβ‚‚) (τ₃ : S₁.X₃ ⟢ Sβ‚‚.X₃) (comm₁₂ : CategoryTheory.CategoryStruct.comp τ₁ Sβ‚‚.f = CategoryTheory.CategoryStruct.comp S₁.f Ο„β‚‚) (comm₂₃ : CategoryTheory.CategoryStruct.comp Ο„β‚‚ Sβ‚‚.g = CategoryTheory.CategoryStruct.comp S₁.g τ₃), (CategoryTheory.ShortComplex.homMk τ₁ Ο„β‚‚ τ₃ comm₁₂ comm₂₃).τ₁ = τ₁
Matroid.IsCircuit.eq_fundCircuit_of_subset
Mathlib.Combinatorics.Matroid.Circuit
βˆ€ {Ξ± : Type u_1} {M : Matroid Ξ±} {C I : Set Ξ±} {e : Ξ±}, M.IsCircuit C β†’ M.Indep I β†’ C βŠ† insert e I β†’ C = M.fundCircuit e I
LieDerivation.exp_map_apply
Mathlib.Algebra.Lie.Derivation.Basic
βˆ€ {R : Type u_1} {L : Type u_2} [inst : CommRing R] [inst_1 : LieRing L] [inst_2 : LieAlgebra R L] [inst_3 : LieAlgebra β„š L] (D : LieDerivation R L L) (h : IsNilpotent ↑D) (l : L), (D.exp h) l = (IsNilpotent.exp ↑D) l
Lean.Elab.Structural.EqnInfo._sizeOf_1
Lean.Elab.PreDefinition.Structural.Eqns
Lean.Elab.Structural.EqnInfo β†’ β„•
MonadReaderOf.read
Init.Prelude
{ρ : semiOutParam (Type u)} β†’ {m : Type u β†’ Type v} β†’ [self : MonadReaderOf ρ m] β†’ m ρ
Asymptotics.transIsEquivalentIsLittleO
Mathlib.Analysis.Asymptotics.AsymptoticEquivalent
{Ξ± : Type u_1} β†’ {Ξ² : Type u_2} β†’ {Ξ²β‚‚ : Type u_3} β†’ [inst : NormedAddCommGroup Ξ²] β†’ [inst_1 : Norm Ξ²β‚‚] β†’ {l : Filter Ξ±} β†’ Trans (Asymptotics.IsEquivalent l) (Asymptotics.IsLittleO l) (Asymptotics.IsLittleO l)
CategoryTheory.PreOneHypercover.cylinder_X
Mathlib.CategoryTheory.Sites.Hypercover.Homotopy
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {S : C} {E : CategoryTheory.PreOneHypercover S} {F : CategoryTheory.PreOneHypercover S} [inst_1 : CategoryTheory.Limits.HasPullbacks C] (f g : E.Hom F) (p : (i : E.Iβ‚€) Γ— F.I₁ (f.sβ‚€ i) (g.sβ‚€ i)), (CategoryTheory.PreOneHypercover.cylinder f g).X p = CategoryTheory.PreOneHypercover.cylinderX f g p.snd
CategoryTheory.CostructuredArrow.ΞΉCompGrothendieckPrecompFunctorToCommaCompFst_hom_app
Mathlib.CategoryTheory.Comma.StructuredArrow.Functor
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type uβ‚‚} [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] {E : Type u₃} [inst_2 : CategoryTheory.Category.{v₃, u₃} E] (L : CategoryTheory.Functor C D) (R : CategoryTheory.Functor E D) (X : E) (X_1 : ↑((R.comp (CategoryTheory.CostructuredArrow.functor L)).obj X)), (CategoryTheory.CostructuredArrow.ΞΉCompGrothendieckPrecompFunctorToCommaCompFst L R X).hom.app X_1 = CategoryTheory.CategoryStruct.id X_1.left
Homeomorph.ext
Mathlib.Topology.Homeomorph.Defs
βˆ€ {X : Type u_1} {Y : Type u_2} [inst : TopologicalSpace X] [inst_1 : TopologicalSpace Y] {h h' : X β‰ƒβ‚œ Y}, (βˆ€ (x : X), h x = h' x) β†’ h = h'
Std.DHashMap.Internal.Rawβ‚€.Const.getKeyD_filter
Std.Data.DHashMap.Internal.RawLemmas
βˆ€ {Ξ± : Type u} [inst : BEq Ξ±] [inst_1 : Hashable Ξ±] {Ξ² : Type v} (m : Std.DHashMap.Internal.Rawβ‚€ Ξ± fun x => Ξ²) [inst_2 : EquivBEq Ξ±] [inst_3 : LawfulHashable Ξ±] {f : Ξ± β†’ Ξ² β†’ Bool} {k fallback : Ξ±} (h : (↑m).WF), (Std.DHashMap.Internal.Rawβ‚€.filter f m).getKeyD k fallback = ((m.getKey? k).pfilter fun x h' => f x (Std.DHashMap.Internal.Rawβ‚€.Const.get m x β‹―)).getD fallback
Submodule.IsLattice.smul
Mathlib.Algebra.Module.Lattice
βˆ€ {R : Type u_1} [inst : CommRing R] (A : Type u_2) [inst_1 : CommRing A] [inst_2 : Algebra R A] {V : Type u_3} [inst_3 : AddCommGroup V] [inst_4 : Module R V] [inst_5 : Module A V] [inst_6 : IsScalarTower R A V] (M : Submodule R V) [Submodule.IsLattice A M] (a : AΛ£), Submodule.IsLattice A (a β€’ M)
TensorProduct.mapOfCompatibleSMul
Mathlib.LinearAlgebra.TensorProduct.Basic
(R : Type u_1) β†’ [inst : CommSemiring R] β†’ (A : Type u_6) β†’ (M : Type u_7) β†’ (N : Type u_8) β†’ [inst_1 : AddCommMonoid M] β†’ [inst_2 : AddCommMonoid N] β†’ [inst_3 : Module R M] β†’ [inst_4 : Module R N] β†’ [inst_5 : CommSemiring A] β†’ [inst_6 : Module A M] β†’ [inst_7 : Module A N] β†’ [inst_8 : SMulCommClass R A M] β†’ [TensorProduct.CompatibleSMul R A M N] β†’ TensorProduct A M N β†’β‚—[A] TensorProduct R M N
_private.Mathlib.Data.Nat.Factorial.Basic.0.Nat.pow_sub_le_descFactorial.match_1_1
Mathlib.Data.Nat.Factorial.Basic
βˆ€ (motive : β„• β†’ Prop) (x : β„•), (βˆ€ (a : Unit), motive 0) β†’ (βˆ€ (k : β„•), motive k.succ) β†’ motive x
BitVec.toNat_shiftConcat_eq_of_lt
Init.Data.BitVec.Lemmas
βˆ€ {w : β„•} {x : BitVec w} {b : Bool} {k : β„•}, k < w β†’ x.toNat < 2 ^ k β†’ (x.shiftConcat b).toNat = x.toNat * 2 + b.toNat
CategoryTheory.Limits.MulticospanIndex.sectionsEquiv._proof_3
Mathlib.CategoryTheory.Limits.Types.Multiequalizer
βˆ€ {J : CategoryTheory.Limits.MulticospanShape} (I : CategoryTheory.Limits.MulticospanIndex J (Type u_3)) (x : I.sections) (r : J.R), I.multicospan.map (CategoryTheory.Limits.WalkingMulticospan.Hom.fst r) (β†‘βŸ¨fun i => match i with | CategoryTheory.Limits.WalkingMulticospan.left i => x.val i | CategoryTheory.Limits.WalkingMulticospan.right j => I.fst j (x.val (J.fst j)), β‹―βŸ© (CategoryTheory.Limits.WalkingMulticospan.left (J.fst r))) = I.snd r (β†‘βŸ¨fun i => match i with | CategoryTheory.Limits.WalkingMulticospan.left i => x.val i | CategoryTheory.Limits.WalkingMulticospan.right j => I.fst j (x.val (J.fst j)), β‹―βŸ© (CategoryTheory.Limits.WalkingMulticospan.left (J.snd r)))
MeasureTheory.ComplexMeasure.absolutelyContinuous_ennreal_iff
Mathlib.MeasureTheory.Measure.Complex
βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} (c : MeasureTheory.ComplexMeasure Ξ±) (ΞΌ : MeasureTheory.VectorMeasure Ξ± ENNReal), MeasureTheory.VectorMeasure.AbsolutelyContinuous c ΞΌ ↔ MeasureTheory.VectorMeasure.AbsolutelyContinuous (MeasureTheory.ComplexMeasure.re c) ΞΌ ∧ MeasureTheory.VectorMeasure.AbsolutelyContinuous (MeasureTheory.ComplexMeasure.im c) ΞΌ
IsSymmetricRel.iInter
Mathlib.Topology.UniformSpace.Defs
βˆ€ {Ξ± : Type ua} {ΞΉ : Sort u_1} {U : ΞΉ β†’ SetRel Ξ± Ξ±}, (βˆ€ (i : ΞΉ), IsSymmetricRel (U i)) β†’ IsSymmetricRel (β‹‚ i, U i)
_private.Lean.Compiler.LCNF.JoinPoints.0.Lean.Compiler.LCNF.JoinPointFinder.removeCandidatesInArg
Lean.Compiler.LCNF.JoinPoints
Lean.Compiler.LCNF.Arg β†’ Lean.Compiler.LCNF.JoinPointFinder.FindM Unit
Polynomial.zero_of_eval_zero
Mathlib.Algebra.Polynomial.Roots
βˆ€ {R : Type u} [inst : CommRing R] [IsDomain R] [Infinite R] (p : Polynomial R), (βˆ€ (x : R), Polynomial.eval x p = 0) β†’ p = 0
[email protected]._hygCtx._hyg.2
Mathlib.Algebra.RingQuot
(S : Type uS) β†’ [inst : CommSemiring S] β†’ {A : Type uA} β†’ [inst_1 : Semiring A] β†’ [inst_2 : Algebra S A] β†’ (s : A β†’ A β†’ Prop) β†’ A →ₐ[S] RingQuot s
Set.NPow
Mathlib.Algebra.Group.Pointwise.Set.Basic
{Ξ± : Type u_2} β†’ [One Ξ±] β†’ [Mul Ξ±] β†’ Pow (Set Ξ±) β„•
Lean.Elab.Tactic.BVDecide.Frontend.Normalize.MatchKind.enumWithDefault.elim
Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Basic
{motive : Lean.Elab.Tactic.BVDecide.Frontend.Normalize.MatchKind β†’ Sort u} β†’ (t : Lean.Elab.Tactic.BVDecide.Frontend.Normalize.MatchKind) β†’ t.ctorIdx = 1 β†’ ((info : Lean.InductiveVal) β†’ (ctors : Array Lean.ConstructorVal) β†’ motive (Lean.Elab.Tactic.BVDecide.Frontend.Normalize.MatchKind.enumWithDefault info ctors)) β†’ motive t
Finset.one_le_divConst_self
Mathlib.Combinatorics.Additive.DoublingConst
βˆ€ {G : Type u_1} [inst : Group G] [inst_1 : DecidableEq G] {A : Finset G}, A.Nonempty β†’ 1 ≀ A.divConst A
Lean.Meta.StructProjDecl._sizeOf_inst
Lean.Meta.Structure
SizeOf Lean.Meta.StructProjDecl
OpenPartialHomeomorph.ofSet_symm
Mathlib.Topology.OpenPartialHomeomorph.IsImage
βˆ€ {X : Type u_1} [inst : TopologicalSpace X] {s : Set X} (hs : IsOpen s), (OpenPartialHomeomorph.ofSet s hs).symm = OpenPartialHomeomorph.ofSet s hs
Std.Time.Database.TZdb.inst.match_1
Std.Time.Zoned.Database.TZdb
(motive : Option String β†’ Sort u_1) β†’ (env : Option String) β†’ ((path : String) β†’ motive (some path)) β†’ ((x : Option String) β†’ motive x) β†’ motive env
_private.Mathlib.RingTheory.MvPolynomial.WeightedHomogeneous.0.MvPolynomial.weightedHomogeneousComponent_finsupp._simp_1_2
Mathlib.RingTheory.MvPolynomial.WeightedHomogeneous
βˆ€ {Ξ± : Sort u_1} {p : Ξ± β†’ Prop}, (Β¬βˆƒ x, p x) = βˆ€ (x : Ξ±), Β¬p x
_private.Mathlib.Topology.LocallyFinite.0.LocallyFinite.closure_iUnion._simp_1_1
Mathlib.Topology.LocallyFinite
βˆ€ {X : Type u} [inst : TopologicalSpace X] {x : X} {s : Set X}, (x ∈ closure s) = (nhdsWithin x s).NeBot
Std.Time.ZonedDateTime.toPlainDateTime
Std.Time.Zoned.ZonedDateTime
Std.Time.ZonedDateTime β†’ Std.Time.PlainDateTime
Multiset.decidableEq._proof_2
Mathlib.Data.Multiset.Defs
βˆ€ {Ξ± : Type u_1} (x x_1 : List Ξ±), ⟦x⟧ = ⟦x_1⟧ ↔ x β‰ˆ x_1
gcd_same
Mathlib.Algebra.GCDMonoid.Basic
βˆ€ {Ξ± : Type u_1} [inst : CancelCommMonoidWithZero Ξ±] [inst_1 : NormalizedGCDMonoid Ξ±] (a : Ξ±), gcd a a = normalize a
Lean.Elab.InlayHintTextEdit.recOn
Lean.Elab.InfoTree.InlayHints
{motive : Lean.Elab.InlayHintTextEdit β†’ Sort u} β†’ (t : Lean.Elab.InlayHintTextEdit) β†’ ((range : Lean.Syntax.Range) β†’ (newText : String) β†’ motive { range := range, newText := newText }) β†’ motive t
NormedAddGroupHom.coeAddHom_apply
Mathlib.Analysis.Normed.Group.Hom
βˆ€ {V₁ : Type u_2} {Vβ‚‚ : Type u_3} [inst : SeminormedAddCommGroup V₁] [inst_1 : SeminormedAddCommGroup Vβ‚‚] (a : NormedAddGroupHom V₁ Vβ‚‚) (a_1 : V₁), NormedAddGroupHom.coeAddHom a a_1 = a a_1
_private.Lean.Meta.DiscrTree.0.Lean.Meta.DiscrTree.getMatchKeyRootFor._sparseCasesOn_1
Lean.Meta.DiscrTree
{motive : Lean.Expr β†’ Sort u} β†’ (t : Lean.Expr) β†’ ((a : Lean.Literal) β†’ motive (Lean.Expr.lit a)) β†’ ((fvarId : Lean.FVarId) β†’ motive (Lean.Expr.fvar fvarId)) β†’ ((mvarId : Lean.MVarId) β†’ motive (Lean.Expr.mvar mvarId)) β†’ ((typeName : Lean.Name) β†’ (idx : β„•) β†’ (struct : Lean.Expr) β†’ motive (Lean.Expr.proj typeName idx struct)) β†’ ((binderName : Lean.Name) β†’ (binderType body : Lean.Expr) β†’ (binderInfo : Lean.BinderInfo) β†’ motive (Lean.Expr.forallE binderName binderType body binderInfo)) β†’ ((declName : Lean.Name) β†’ (us : List Lean.Level) β†’ motive (Lean.Expr.const declName us)) β†’ (t.ctorIdx β‰  9 β†’ t.ctorIdx β‰  1 β†’ t.ctorIdx β‰  2 β†’ t.ctorIdx β‰  11 β†’ t.ctorIdx β‰  7 β†’ t.ctorIdx β‰  4 β†’ motive t) β†’ motive t
CategoryTheory.ShortComplex.Exact.epi_f
Mathlib.Algebra.Homology.ShortComplex.Exact
βˆ€ {C : Type u_1} [inst : CategoryTheory.Category.{u_3, u_1} C] [inst_1 : CategoryTheory.Preadditive C] {S : CategoryTheory.ShortComplex C}, S.Exact β†’ S.g = 0 β†’ CategoryTheory.Epi S.f
bddAbove_Ioc
Mathlib.Order.Bounds.Basic
βˆ€ {Ξ± : Type u_1} [inst : Preorder Ξ±] {a b : Ξ±}, BddAbove (Set.Ioc a b)
Mathlib.Tactic.CC.CCM.getEqcLambdas
Mathlib.Tactic.CC.Addition
Lean.Expr β†’ optParam (Array Lean.Expr) #[] β†’ Mathlib.Tactic.CC.CCM (Array Lean.Expr)
CochainComplex.HomComplex.leftHomologyData'_Ο€
Mathlib.Algebra.Homology.HomotopyCategory.HomComplexCohomology
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Preadditive C] (K L : CochainComplex C β„€) (n m p : β„€) (hm : n + 1 = m) (hp : m + 1 = p), (CochainComplex.HomComplex.leftHomologyData' K L n m p hm hp).Ο€ = AddCommGrpCat.ofHom (CochainComplex.HomComplex.CohomologyClass.mkAddMonoidHom K L m)
HomologicalComplex.shortComplexFunctor'._proof_5
Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex
βˆ€ (C : Type u_2) [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.Limits.HasZeroMorphisms C] {ΞΉ : Type u_3} (c : ComplexShape ΞΉ) (i j k : ΞΉ) {X Y Z : HomologicalComplex C c} (f : X ⟢ Y) (g : Y ⟢ Z), { τ₁ := (CategoryTheory.CategoryStruct.comp f g).f i, Ο„β‚‚ := (CategoryTheory.CategoryStruct.comp f g).f j, τ₃ := (CategoryTheory.CategoryStruct.comp f g).f k, comm₁₂ := β‹―, comm₂₃ := β‹― } = CategoryTheory.CategoryStruct.comp { τ₁ := f.f i, Ο„β‚‚ := f.f j, τ₃ := f.f k, comm₁₂ := β‹―, comm₂₃ := β‹― } { τ₁ := g.f i, Ο„β‚‚ := g.f j, τ₃ := g.f k, comm₁₂ := β‹―, comm₂₃ := β‹― }
Measurable.lmarginal
Mathlib.MeasureTheory.Integral.Marginal
βˆ€ {Ξ΄ : Type u_1} {X : Ξ΄ β†’ Type u_3} [inst : (i : Ξ΄) β†’ MeasurableSpace (X i)] (ΞΌ : (i : Ξ΄) β†’ MeasureTheory.Measure (X i)) [inst_1 : DecidableEq Ξ΄] {s : Finset Ξ΄} {f : ((i : Ξ΄) β†’ X i) β†’ ENNReal} [βˆ€ (i : Ξ΄), MeasureTheory.SigmaFinite (ΞΌ i)], Measurable f β†’ Measurable (βˆ«β‹―βˆ«β»_s, f βˆ‚ΞΌ)
MeasureTheory.Measure.toSphere_apply_aux
Mathlib.MeasureTheory.Constructions.HaarToSphere
βˆ€ {E : Type u_1} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace ℝ E] [inst_2 : MeasurableSpace E] (ΞΌ : MeasureTheory.Measure E) (s : Set ↑(Metric.sphere 0 1)) (r : ↑(Set.Ioi 0)), ΞΌ (Subtype.val '' (⇑(homeomorphUnitSphereProd E) ⁻¹' s Γ—Λ’ Set.Iio r)) = ΞΌ (Set.Ioo 0 ↑r β€’ Subtype.val '' s)
CoalgHom.End._proof_3
Mathlib.RingTheory.Coalgebra.Hom
βˆ€ {R : Type u_1} {A : Type u_2} [inst : CommSemiring R] [inst_1 : AddCommMonoid A] [inst_2 : Module R A] [inst_3 : CoalgebraStruct R A] (x : A β†’β‚—c[R] A), x * 1 = x
InitialSeg.total
Mathlib.Order.InitialSeg
{Ξ± : Type u_1} β†’ {Ξ² : Type u_2} β†’ (r : Ξ± β†’ Ξ± β†’ Prop) β†’ (s : Ξ² β†’ Ξ² β†’ Prop) β†’ [IsWellOrder Ξ± r] β†’ [IsWellOrder Ξ² s] β†’ InitialSeg r s βŠ• InitialSeg s r