name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
CategoryTheory.Functor.OplaxMonoidal.instIsIsoΞ·
Mathlib.CategoryTheory.Monoidal.Cartesian.Basic
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.CartesianMonoidalCategory C] {D : Type uβ‚‚} [inst_2 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] [inst_3 : CategoryTheory.CartesianMonoidalCategory D] (F : CategoryTheory.Functor C D) [inst_4 : F.OplaxMonoidal] [CategoryTheory.Limits.PreservesFiniteProducts F], CategoryTheory.IsIso (CategoryTheory.Functor.OplaxMonoidal.Ξ· F)
CompactExhaustion.mk.inj
Mathlib.Topology.Compactness.SigmaCompact
βˆ€ {X : Type u_4} {inst : TopologicalSpace X} {toFun : β„• β†’ Set X} {isCompact' : βˆ€ (n : β„•), IsCompact (toFun n)} {subset_interior_succ' : βˆ€ (n : β„•), toFun n βŠ† interior (toFun (n + 1))} {iUnion_eq' : ⋃ n, toFun n = Set.univ} {toFun_1 : β„• β†’ Set X} {isCompact'_1 : βˆ€ (n : β„•), IsCompact (toFun_1 n)} {subset_interior_succ'_1 : βˆ€ (n : β„•), toFun_1 n βŠ† interior (toFun_1 (n + 1))} {iUnion_eq'_1 : ⋃ n, toFun_1 n = Set.univ}, { toFun := toFun, isCompact' := isCompact', subset_interior_succ' := subset_interior_succ', iUnion_eq' := iUnion_eq' } = { toFun := toFun_1, isCompact' := isCompact'_1, subset_interior_succ' := subset_interior_succ'_1, iUnion_eq' := iUnion_eq'_1 } β†’ toFun = toFun_1
Fin.shiftLeft
Init.Data.Fin.Basic
{n : β„•} β†’ Fin n β†’ Fin n β†’ Fin n
Matrix.uniqueEquiv_symm_apply
Mathlib.LinearAlgebra.Matrix.Unique
βˆ€ {m : Type u_1} {n : Type u_2} {A : Type u_3} [inst : Unique m] [inst_1 : Unique n] (a : A), Matrix.uniqueEquiv.symm a = Matrix.of fun x x_1 => a
_private.Mathlib.Analysis.Normed.Lp.PiLp.0.PiLp.lipschitzWith_ofLp_aux._simp_1_3
Mathlib.Analysis.Normed.Lp.PiLp
βˆ€ (p : True β†’ Prop), (βˆ€ (x : True), p x) = p True.intro
Mathlib.Tactic.Abel._aux_Mathlib_Tactic_Abel___macroRules_Mathlib_Tactic_Abel_abel1!_1
Mathlib.Tactic.Abel
Lean.Macro
CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_assoc
Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
βˆ€ {B : Type u₁} [inst : CategoryTheory.Bicategory B] {C : Type uβ‚‚} [inst_1 : CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {a b : B} (f : a ⟢ b) {Z : F.obj a ⟢ F.obj b} (h : CategoryTheory.CategoryStruct.comp (F.map f) (F.map (CategoryTheory.CategoryStruct.id b)) ⟢ Z), CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (F.mapId b).inv) h = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor (F.map f)).hom (CategoryTheory.CategoryStruct.comp (F.mapβ‚‚ (CategoryTheory.Bicategory.rightUnitor f).inv) (CategoryTheory.CategoryStruct.comp (F.mapComp f (CategoryTheory.CategoryStruct.id b)).hom h))
IntermediateField.exists_algHom_of_splits_of_aeval
Mathlib.FieldTheory.Extension
βˆ€ {F : Type u_1} {E : Type u_2} {K : Type u_3} [inst : Field F] [inst_1 : Field E] [inst_2 : Field K] [inst_3 : Algebra F E] [inst_4 : Algebra F K], (βˆ€ (s : E), IsIntegral F s ∧ (Polynomial.map (algebraMap F K) (minpoly F s)).Splits) β†’ βˆ€ {x : E} {y : K}, (Polynomial.aeval y) (minpoly F x) = 0 β†’ βˆƒ Ο†, Ο† x = y
Finset.nontrivial_iff_ne_singleton
Mathlib.Data.Finset.Insert
βˆ€ {Ξ± : Type u_1} {s : Finset Ξ±} {a : Ξ±}, a ∈ s β†’ (s.Nontrivial ↔ s β‰  {a})
PartOrdEmb.dual._proof_1
Mathlib.Order.Category.PartOrdEmb
βˆ€ (X : PartOrdEmb), PartOrdEmb.ofHom (PartOrdEmb.Hom.hom (CategoryTheory.CategoryStruct.id X)).dual = CategoryTheory.CategoryStruct.id { carrier := (↑X)α΅’α΅ˆ, str := OrderDual.instPartialOrder ↑X }
pure_le_nhds
Mathlib.Topology.Neighborhoods
βˆ€ {X : Type u} [inst : TopologicalSpace X], pure ≀ nhds
_private.Init.Data.BitVec.Bitblast.0.BitVec.ult_eq_not_carry._simp_1_5
Init.Data.BitVec.Bitblast
βˆ€ {p q : Prop} {x : Decidable p} {x_1 : Decidable q}, (decide p = decide q) = (p ↔ q)
Lean.Elab.Term.MutualClosure.FixPoint.run
Lean.Elab.MutualDef
Array Lean.FVarId β†’ Lean.Elab.Term.MutualClosure.UsedFVarsMap β†’ Lean.Elab.Term.MutualClosure.UsedFVarsMap
NonemptyFinLinOrd.ofHom
Mathlib.Order.Category.NonemptyFinLinOrd
{X Y : Type u} β†’ [inst : Nonempty X] β†’ [inst_1 : LinearOrder X] β†’ [inst_2 : Fintype X] β†’ [inst_3 : Nonempty Y] β†’ [inst_4 : LinearOrder Y] β†’ [inst_5 : Fintype Y] β†’ (X β†’o Y) β†’ (NonemptyFinLinOrd.of X ⟢ NonemptyFinLinOrd.of Y)
Ideal.under_under
Mathlib.RingTheory.Ideal.Over
βˆ€ {A : Type u_2} [inst : CommSemiring A] {B : Type u_3} [inst_1 : CommSemiring B] {C : Type u_4} [inst_2 : Semiring C] [inst_3 : Algebra A B] [inst_4 : Algebra B C] [inst_5 : Algebra A C] [IsScalarTower A B C] (𝔓 : Ideal C), Ideal.under A (Ideal.under B 𝔓) = Ideal.under A 𝔓
_private.Init.Data.Int.LemmasAux.0.Int.min_assoc._proof_1_1
Init.Data.Int.LemmasAux
βˆ€ (a b c : β„€), Β¬min (min a b) c = min a (min b c) β†’ False
List.infix_filter_iff
Init.Data.List.Sublist
βˆ€ {Ξ± : Type u_1} {p : Ξ± β†’ Bool} {l₁ lβ‚‚ : List Ξ±}, lβ‚‚ <:+: List.filter p l₁ ↔ βˆƒ l, l <:+: l₁ ∧ lβ‚‚ = List.filter p l
Std.Do.SPred.true_intro
Std.Do.SPred.DerivedLaws
βˆ€ {Οƒs : List (Type u)} {P : Std.Do.SPred Οƒs}, P βŠ’β‚› ⌜True⌝
_private.Mathlib.Tactic.Abel.0.Mathlib.Tactic.Abel.addG.match_1
Mathlib.Tactic.Abel
(motive : Lean.Name β†’ Sort u_1) β†’ (x : Lean.Name) β†’ ((p : Lean.Name) β†’ (s : String) β†’ motive (p.str s)) β†’ ((n : Lean.Name) β†’ motive n) β†’ motive x
BoxIntegral.Box.Ioo_subset_coe
Mathlib.Analysis.BoxIntegral.Box.Basic
βˆ€ {ΞΉ : Type u_1} (I : BoxIntegral.Box ΞΉ), BoxIntegral.Box.Ioo I βŠ† ↑I
FormalMultilinearSeries.coeff_eq_zero
Mathlib.Analysis.Calculus.FormalMultilinearSeries
βˆ€ {π•œ : Type u} {E : Type v} [inst : NontriviallyNormedField π•œ] [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {p : FormalMultilinearSeries π•œ π•œ E} {n : β„•}, p.coeff n = 0 ↔ p n = 0
_private.Std.Data.DTreeMap.Internal.Balancing.0.Std.DTreeMap.Internal.Impl.balanceLErase.match_5.splitter
Std.Data.DTreeMap.Internal.Balancing
{Ξ± : Type u_1} β†’ {Ξ² : Ξ± β†’ Type u_2} β†’ (rs : β„•) β†’ (k : Ξ±) β†’ (v : Ξ² k) β†’ (l r : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β†’ (motive : (l_1 : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β†’ l_1.Balanced β†’ Std.DTreeMap.Internal.Impl.BalanceLErasePrecond l_1.size (Std.DTreeMap.Internal.Impl.inner rs k v l r).size β†’ Sort u_3) β†’ (l_1 : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β†’ (hlb : l_1.Balanced) β†’ (hlr : Std.DTreeMap.Internal.Impl.BalanceLErasePrecond l_1.size (Std.DTreeMap.Internal.Impl.inner rs k v l r).size) β†’ ((hlb : Std.DTreeMap.Internal.Impl.leaf.Balanced) β†’ (hlr : Std.DTreeMap.Internal.Impl.BalanceLErasePrecond Std.DTreeMap.Internal.Impl.leaf.size (Std.DTreeMap.Internal.Impl.inner rs k v l r).size) β†’ motive Std.DTreeMap.Internal.Impl.leaf hlb hlr) β†’ ((ls : β„•) β†’ (lk : Ξ±) β†’ (lv : Ξ² lk) β†’ (ll lr : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β†’ (hlb : (Std.DTreeMap.Internal.Impl.inner ls lk lv ll lr).Balanced) β†’ (hlr : Std.DTreeMap.Internal.Impl.BalanceLErasePrecond (Std.DTreeMap.Internal.Impl.inner ls lk lv ll lr).size (Std.DTreeMap.Internal.Impl.inner rs k v l r).size) β†’ motive (Std.DTreeMap.Internal.Impl.inner ls lk lv ll lr) hlb hlr) β†’ motive l_1 hlb hlr
Subsemigroup.range_subtype
Mathlib.Algebra.Group.Subsemigroup.Operations
βˆ€ {M : Type u_1} [inst : Mul M] (s : Subsemigroup M), (MulMemClass.subtype s).srange = s
_private.Mathlib.Algebra.Star.NonUnitalSubalgebra.0.NonUnitalStarAlgebra.mem_iInf._simp_1_2
Mathlib.Algebra.Star.NonUnitalSubalgebra
βˆ€ {Ξ± : Type u_1} {ΞΉ : Sort u_4} {f : ΞΉ β†’ Ξ±} {p : Ξ± β†’ Prop}, (βˆ€ a ∈ Set.range f, p a) = βˆ€ (i : ΞΉ), p (f i)
Lean.Meta.instInhabitedUnificationHints.default
Lean.Meta.UnificationHint
Lean.Meta.UnificationHints
_private.Mathlib.Data.List.Basic.0.List.erase_getElem._proof_1_6
Mathlib.Data.List.Basic
βˆ€ {ΞΉ : Type u_1} (l : List ΞΉ) (n : β„•), (List.take n l).length + 1 ≀ l.length β†’ (List.take n l).length < l.length
[email protected]._hygCtx._hyg.47
Mathlib.MeasureTheory.Measure.Real
Lean.Syntax
Lean.Omega.LinearCombo.coordinate_eval_0
Init.Omega.LinearCombo
βˆ€ {a0 : β„€} {t : List β„€}, (Lean.Omega.LinearCombo.coordinate 0).eval (Lean.Omega.Coeffs.ofList (a0 :: t)) = a0
ProofWidgets.instFromJsonRpcEncodablePacket.fromJson._@.ProofWidgets.Presentation.Expr.1937505173._hygCtx._hyg.17
ProofWidgets.Presentation.Expr
Lean.Json β†’ Except String ProofWidgets.RpcEncodablePacket✝
AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.isLocallyFraction
Mathlib.AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf
{A : Type u_1} β†’ {Οƒ : Type u_2} β†’ [inst : CommRing A] β†’ [inst_1 : SetLike Οƒ A] β†’ [inst_2 : AddSubgroupClass Οƒ A] β†’ (π’œ : β„• β†’ Οƒ) β†’ [inst_3 : GradedRing π’œ] β†’ TopCat.LocalPredicate fun x => HomogeneousLocalization.AtPrime π’œ x.asHomogeneousIdeal.toIdeal
List.eq_nil_of_map_eq_nil
Init.Data.List.Lemmas
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {f : Ξ± β†’ Ξ²} {l : List Ξ±}, List.map f l = [] β†’ l = []
Lean.Elab.ContextInfo.parentDecl?._default
Lean.Elab.InfoTree.Types
Option Lean.Name
CategoryTheory.OplaxFunctor.comp
Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} β†’ [inst : CategoryTheory.Bicategory B] β†’ {C : Type uβ‚‚} β†’ [inst_1 : CategoryTheory.Bicategory C] β†’ {D : Type u₃} β†’ [inst_2 : CategoryTheory.Bicategory D] β†’ CategoryTheory.OplaxFunctor B C β†’ CategoryTheory.OplaxFunctor C D β†’ CategoryTheory.OplaxFunctor B D
_private.Lean.Widget.InteractiveDiagnostic.0.Lean.Widget.msgToInteractive.match_3
Lean.Widget.InteractiveDiagnostic
(motive : Lean.Widget.EmbedFmt✝ β†’ Sort u_1) β†’ (x : Lean.Widget.EmbedFmt✝¹) β†’ ((ctx : Lean.Elab.ContextInfo) β†’ (infos : Std.TreeMap β„• Lean.Elab.Info compare) β†’ motive (Lean.Widget.EmbedFmt.code✝ ctx infos)) β†’ ((ctx : Lean.Elab.ContextInfo) β†’ (lctx : Lean.LocalContext) β†’ (g : Lean.MVarId) β†’ motive (Lean.Widget.EmbedFmt.goal✝ ctx lctx g)) β†’ ((wi : Lean.Widget.WidgetInstance) β†’ (alt : Std.Format) β†’ motive (Lean.Widget.EmbedFmt.widget✝ wi alt)) β†’ ((cls : Lean.Name) β†’ (msg : Std.Format) β†’ (collapsed : Bool) β†’ (children : Lean.Widget.StrictOrLazy (Array Std.Format) (Array Lean.MessageData)) β†’ motive (Lean.Widget.EmbedFmt.trace✝ cls msg collapsed children)) β†’ (Unit β†’ motive Lean.Widget.EmbedFmt.ignoreTags✝) β†’ motive x
Associates.FactorSet.prod
Mathlib.RingTheory.UniqueFactorizationDomain.FactorSet
{Ξ± : Type u_1} β†’ [inst : CancelCommMonoidWithZero Ξ±] β†’ Associates.FactorSet Ξ± β†’ Associates Ξ±
List.length_product
Mathlib.Data.List.ProdSigma
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} (l₁ : List Ξ±) (lβ‚‚ : List Ξ²), (l₁ Γ—Λ’ lβ‚‚).length = l₁.length * lβ‚‚.length
FirstOrder.Language.IsRelational
Mathlib.ModelTheory.Basic
FirstOrder.Language β†’ Prop
Submodule.map.congr_simp
Mathlib.Algebra.Module.Submodule.Map
βˆ€ {R : Type u_1} {Rβ‚‚ : Type u_3} {M : Type u_5} {Mβ‚‚ : Type u_7} [inst : Semiring R] [inst_1 : Semiring Rβ‚‚] [inst_2 : AddCommMonoid M] [inst_3 : AddCommMonoid Mβ‚‚] [inst_4 : Module R M] [inst_5 : Module Rβ‚‚ Mβ‚‚] {σ₁₂ σ₁₂_1 : R β†’+* Rβ‚‚} (e_σ₁₂ : σ₁₂ = σ₁₂_1) [inst_6 : RingHomSurjective σ₁₂] {F : Type u_9} [inst_7 : FunLike F M Mβ‚‚] [inst_8 : SemilinearMapClass F σ₁₂ M Mβ‚‚] (f f_1 : F), f = f_1 β†’ βˆ€ (p p_1 : Submodule R M), p = p_1 β†’ Submodule.map f p = Submodule.map f_1 p_1
CategoryTheory.ShortComplex.moduleCat_exact_iff
Mathlib.Algebra.Homology.ShortComplex.ModuleCat
βˆ€ {R : Type u} [inst : Ring R] (S : CategoryTheory.ShortComplex (ModuleCat R)), S.Exact ↔ βˆ€ (xβ‚‚ : ↑S.Xβ‚‚), (CategoryTheory.ConcreteCategory.hom S.g) xβ‚‚ = 0 β†’ βˆƒ x₁, (CategoryTheory.ConcreteCategory.hom S.f) x₁ = xβ‚‚
CategoryTheory.IsCofiltered.nonempty
Mathlib.CategoryTheory.Filtered.Basic
βˆ€ {C : Type u} {inst : CategoryTheory.Category.{v, u} C} [self : CategoryTheory.IsCofiltered C], Nonempty C
[email protected]._hygCtx._hyg.3
Lean.Widget.Basic
TypeName Lean.Elab.InfoWithCtx
_private.Lean.Meta.Tactic.Grind.Split.0.Lean.Meta.Grind.SplitCandidate.noConfusionType
Lean.Meta.Tactic.Grind.Split
Sort u β†’ Lean.Meta.Grind.SplitCandidate✝ β†’ Lean.Meta.Grind.SplitCandidate✝ β†’ Sort u
AddMonoidHom.precompEquiv
Mathlib.Algebra.Group.Equiv.Basic
{Ξ± : Type u_19} β†’ {Ξ² : Type u_20} β†’ [inst : AddMonoid Ξ±] β†’ [inst_1 : AddMonoid Ξ²] β†’ Ξ± ≃+ Ξ² β†’ (Ξ³ : Type u_21) β†’ [inst_2 : AddMonoid Ξ³] β†’ (Ξ² β†’+ Ξ³) ≃ (Ξ± β†’+ Ξ³)
CategoryTheory.Retract.op_i
Mathlib.CategoryTheory.Retract
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {X Y : C} (h : CategoryTheory.Retract X Y), h.op.i = h.r.op
_private.Std.Data.DHashMap.Internal.WF.0.Std.DHashMap.Internal.Rawβ‚€.isHashSelf_filterMapβ‚˜._simp_1_2
Std.Data.DHashMap.Internal.WF
βˆ€ {Ξ± : Type u_1} {b : Ξ±} {Ξ±_1 : Type u_2} {x : Option Ξ±_1} {f : Ξ±_1 β†’ Ξ±}, (Option.map f x = some b) = βˆƒ a, x = some a ∧ f a = b
Std.DHashMap.isEmpty_insertMany_list
Std.Data.DHashMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {m : Std.DHashMap Ξ± Ξ²} [EquivBEq Ξ±] [LawfulHashable Ξ±] {l : List ((a : Ξ±) Γ— Ξ² a)}, (m.insertMany l).isEmpty = (m.isEmpty && l.isEmpty)
CategoryTheory.Limits.spanExt_inv_app_left
Mathlib.CategoryTheory.Limits.Shapes.Pullback.Cospan
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X β‰… X') (iY : Y β‰… Y') (iZ : Z β‰… Z') {f : X ⟢ Y} {g : X ⟢ Z} {f' : X' ⟢ Y'} {g' : X' ⟢ Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom), (CategoryTheory.Limits.spanExt iX iY iZ wf wg).inv.app CategoryTheory.Limits.WalkingSpan.left = iY.inv
CategoryTheory.IsAccessibleCategory.rec
Mathlib.CategoryTheory.Presentable.LocallyPresentable
{C : Type u} β†’ [hC : CategoryTheory.Category.{v, u} C] β†’ {motive : CategoryTheory.IsAccessibleCategory.{w, v, u} C β†’ Sort u_1} β†’ ((exists_cardinal : βˆƒ ΞΊ, βˆƒ (x : Fact ΞΊ.IsRegular), CategoryTheory.IsCardinalAccessibleCategory C ΞΊ) β†’ motive β‹―) β†’ (t : CategoryTheory.IsAccessibleCategory.{w, v, u} C) β†’ motive t
IntermediateField.isIntegral_iff
Mathlib.FieldTheory.IntermediateField.Algebraic
βˆ€ {K : Type u_1} {L : Type u_2} [inst : Field K] [inst_1 : Field L] [inst_2 : Algebra K L] {S : IntermediateField K L} {x : β†₯S}, IsIntegral K x ↔ IsIntegral K ↑x
[email protected]._hygCtx._hyg.46
Mathlib.MeasureTheory.Measure.Real
Lean.Syntax
Lean.PrettyPrinter.Parenthesizer.ident.parenthesizer._regBuiltin.Lean.PrettyPrinter.Parenthesizer.ident.parenthesizer_1
Lean.Parser
IO Unit
AlgebraicGeometry.Scheme.IdealSheafData.support_antitone
Mathlib.AlgebraicGeometry.IdealSheaf.Basic
βˆ€ {X : AlgebraicGeometry.Scheme}, Antitone AlgebraicGeometry.Scheme.IdealSheafData.support
CategoryTheory.CatCenter.localizationRingHom
Mathlib.CategoryTheory.Center.Localization
{C : Type u₁} β†’ [inst : CategoryTheory.Category.{v₁, u₁} C] β†’ {D : Type uβ‚‚} β†’ [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] β†’ (L : CategoryTheory.Functor C D) β†’ (W : CategoryTheory.MorphismProperty C) β†’ [L.IsLocalization W] β†’ [inst_3 : CategoryTheory.Preadditive C] β†’ [inst_4 : CategoryTheory.Preadditive D] β†’ [L.Additive] β†’ CategoryTheory.CatCenter C β†’+* CategoryTheory.CatCenter D
_private.Std.Time.Date.ValidDate.0.Std.Time.ValidDate.ofOrdinal.go._unary._proof_3
Std.Time.Date.ValidDate
βˆ€ {leap : Bool} (ordinal : Std.Time.Day.Ordinal.OfYear leap) (idx : Std.Time.Month.Ordinal) (acc : β„€), acc + 1 - acc = 1
Std.DHashMap.Internal.Rawβ‚€.insertIfNew_equiv_congr
Std.Data.DHashMap.Internal.RawLemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} [inst : BEq Ξ±] [inst_1 : Hashable Ξ±] (m₁ mβ‚‚ : Std.DHashMap.Internal.Rawβ‚€ Ξ± Ξ²) [EquivBEq Ξ±] [LawfulHashable Ξ±], (↑m₁).WF β†’ (↑mβ‚‚).WF β†’ (↑m₁).Equiv ↑mβ‚‚ β†’ βˆ€ {k : Ξ±} {v : Ξ² k}, (↑(m₁.insertIfNew k v)).Equiv ↑(mβ‚‚.insertIfNew k v)
IsCompact.locallyCompactSpace_of_mem_nhds_of_group
Mathlib.Topology.Algebra.Group.Pointwise
βˆ€ {G : Type w} [inst : TopologicalSpace G] [inst_1 : Group G] [IsTopologicalGroup G] {K : Set G}, IsCompact K β†’ βˆ€ {x : G}, K ∈ nhds x β†’ LocallyCompactSpace G
ringChar.of_eq
Mathlib.Algebra.CharP.Defs
βˆ€ {R : Type u_1} [inst : NonAssocSemiring R] {p : β„•}, ringChar R = p β†’ CharP R p
WittVector.poly_eq_of_wittPolynomial_bind_eq
Mathlib.RingTheory.WittVector.IsPoly
βˆ€ (p : β„•) [Fact (Nat.Prime p)] (f g : β„• β†’ MvPolynomial β„• β„€), (βˆ€ (n : β„•), (MvPolynomial.bind₁ f) (wittPolynomial p β„€ n) = (MvPolynomial.bind₁ g) (wittPolynomial p β„€ n)) β†’ f = g
TwoSidedIdeal.orderIsoIsTwoSided_symm_apply
Mathlib.RingTheory.TwoSidedIdeal.Operations
βˆ€ {R : Type u_1} [inst : Ring R] (I : { I // I.IsTwoSided }), (RelIso.symm TwoSidedIdeal.orderIsoIsTwoSided) I = have this := β‹―; (↑I).toTwoSided
IsPreconnected.eq_one_or_eq_neg_one_of_sq_eq
Mathlib.Topology.Algebra.Field
βˆ€ {Ξ± : Type u_2} {π•œ : Type u_3} {f : Ξ± β†’ π•œ} {S : Set Ξ±} [inst : TopologicalSpace Ξ±] [inst_1 : TopologicalSpace π•œ] [T1Space π•œ] [inst_3 : Ring π•œ] [NoZeroDivisors π•œ], IsPreconnected S β†’ ContinuousOn f S β†’ Set.EqOn (f ^ 2) 1 S β†’ Set.EqOn f 1 S ∨ Set.EqOn f (-1) S
Fin.preimage_natAdd_uIoc_natAdd
Mathlib.Order.Interval.Set.Fin
βˆ€ {n : β„•} (m : β„•) (i j : Fin n), Fin.natAdd m ⁻¹' Set.uIoc (Fin.natAdd m i) (Fin.natAdd m j) = Set.uIoc i j
FirstOrder.Language.Substructure.closure_induction
Mathlib.ModelTheory.Substructures
βˆ€ {L : FirstOrder.Language} {M : Type w} [inst : L.Structure M] {s : Set M} {p : M β†’ Prop} {x : M}, x ∈ (FirstOrder.Language.Substructure.closure L).toFun s β†’ (βˆ€ x ∈ s, p x) β†’ (βˆ€ {n : β„•} (f : L.Functions n), FirstOrder.Language.ClosedUnder f (setOf p)) β†’ p x
CategoryTheory.CartesianClosed.uncurry
Mathlib.CategoryTheory.Monoidal.Closed.Cartesian
{C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ [inst_1 : CategoryTheory.CartesianMonoidalCategory C] β†’ {X Y A : C} β†’ [inst_2 : CategoryTheory.Exponentiable A] β†’ (Y ⟢ A ⟹ X) β†’ (CategoryTheory.MonoidalCategoryStruct.tensorObj A Y ⟢ X)
Set.preimage_const
Mathlib.Data.Set.Image
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} (b : Ξ²) (s : Set Ξ²) [inst : Decidable (b ∈ s)], (fun x => b) ⁻¹' s = if b ∈ s then Set.univ else βˆ…
Multiset.union_le_iff
Mathlib.Data.Multiset.UnionInter
βˆ€ {Ξ± : Type u_1} [inst : DecidableEq Ξ±] {s t u : Multiset Ξ±}, s βˆͺ t ≀ u ↔ s ≀ u ∧ t ≀ u
genericPoint_specializes
Mathlib.Topology.Sober
βˆ€ {Ξ± : Type u_1} [inst : TopologicalSpace Ξ±] [inst_1 : QuasiSober Ξ±] [inst_2 : IrreducibleSpace Ξ±] (x : Ξ±), genericPoint Ξ± β€³ x
Mathlib.Meta.NormNum.Result.toSimpResult.match_1
Mathlib.Tactic.NormNum.Result
{u : Lean.Level} β†’ {Ξ± : Q(Type u)} β†’ {e : Q(Β«$Ξ±Β»)} β†’ (motive : (e' : Q(Β«$Ξ±Β»)) Γ— Q(Β«$eΒ» = Β«$e'Β») β†’ Sort u_1) β†’ (x : (e' : Q(Β«$Ξ±Β»)) Γ— Q(Β«$eΒ» = Β«$e'Β»)) β†’ ((expr : Q(Β«$Ξ±Β»)) β†’ (proof? : Q(Β«$eΒ» = Β«$exprΒ»)) β†’ motive ⟨expr, proof?⟩) β†’ motive x
Nimber.toOrdinal_symm_eq
Mathlib.SetTheory.Nimber.Basic
Nimber.toOrdinal.symm = Ordinal.toNimber
Filter.HasBasis.inf_neBot_iff
Mathlib.Order.Filter.Bases.Basic
βˆ€ {Ξ± : Type u_1} {ΞΉ : Sort u_4} {l l' : Filter Ξ±} {p : ΞΉ β†’ Prop} {s : ΞΉ β†’ Set Ξ±}, l.HasBasis p s β†’ ((l βŠ“ l').NeBot ↔ βˆ€ ⦃i : ι⦄, p i β†’ βˆ€ ⦃s' : Set α⦄, s' ∈ l' β†’ (s i ∩ s').Nonempty)
BialgEquiv.ofAlgEquiv._proof_7
Mathlib.RingTheory.Bialgebra.Equiv
βˆ€ {R : Type u_3} {A : Type u_1} {B : Type u_2} [inst : CommSemiring R] [inst_1 : Semiring A] [inst_2 : Semiring B] [inst_3 : Bialgebra R A] [inst_4 : Bialgebra R B] (f : A ≃ₐ[R] B), (Algebra.TensorProduct.map ↑f ↑f).comp (Bialgebra.comulAlgHom R A) = (Bialgebra.comulAlgHom R B).comp ↑f β†’ TensorProduct.map { toFun := f.toFun, map_add' := β‹―, map_smul' := β‹― } { toFun := f.toFun, map_add' := β‹―, map_smul' := β‹― } βˆ˜β‚— CoalgebraStruct.comul = CoalgebraStruct.comul βˆ˜β‚— { toFun := f.toFun, map_add' := β‹―, map_smul' := β‹― }
CategoryTheory.Functor.PreservesRightHomologyOf.mk._flat_ctor
Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
βˆ€ {C : Type u_1} {D : Type u_2} [inst : CategoryTheory.Category.{u_3, u_1} C] [inst_1 : CategoryTheory.Category.{u_4, u_2} D] [inst_2 : CategoryTheory.Limits.HasZeroMorphisms C] [inst_3 : CategoryTheory.Limits.HasZeroMorphisms D] {F : CategoryTheory.Functor C D} [inst_4 : F.PreservesZeroMorphisms] {S : CategoryTheory.ShortComplex C}, (βˆ€ (h : S.RightHomologyData), h.IsPreservedBy F) β†’ F.PreservesRightHomologyOf S
Matroid.mapSetEmbedding_indep_iff'
Mathlib.Combinatorics.Matroid.Map
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {M : Matroid Ξ±} {f : ↑M.E β†ͺ Ξ²} {I : Set Ξ²}, (M.mapSetEmbedding f).Indep I ↔ βˆƒ Iβ‚€, M.Indep (Subtype.val '' Iβ‚€) ∧ I = ⇑f '' Iβ‚€
Topology.IsEmbedding.comapUniformSpace
Mathlib.Topology.UniformSpace.UniformEmbedding
{Ξ± : Type u_1} β†’ {Ξ² : Type u_2} β†’ [inst : TopologicalSpace Ξ±] β†’ [u : UniformSpace Ξ²] β†’ (f : Ξ± β†’ Ξ²) β†’ Topology.IsEmbedding f β†’ UniformSpace Ξ±
_private.Mathlib.NumberTheory.DirichletCharacter.Orthogonality.0.DirichletCharacter.sum_char_inv_mul_char_eq._simp_1_1
Mathlib.NumberTheory.DirichletCharacter.Orthogonality
βˆ€ {M : Type u_4} {N : Type u_5} {F : Type u_9} [inst : Mul M] [inst_1 : Mul N] [inst_2 : FunLike F M N] [MulHomClass F M N] (f : F) (x y : M), f x * f y = f (x * y)
Nat.add_mod_add_ite
Mathlib.Data.Nat.ModEq
βˆ€ (a b c : β„•), ((a + b) % c + if c ≀ a % c + b % c then c else 0) = a % c + b % c
Algebra.idealMap._proof_1
Mathlib.RingTheory.Ideal.Maps
βˆ€ {R : Type u_1} [inst : CommSemiring R] (S : Type u_2) [inst_1 : Semiring S] [inst_2 : Algebra R S] (I : Ideal R), βˆ€ x ∈ I, (algebraMap R S) x ∈ Ideal.map (algebraMap R S) I
_private.Mathlib.RingTheory.WittVector.TeichmullerSeries.0.WittVector._aux_Mathlib_RingTheory_WittVector_TeichmullerSeries___unexpand_WittVector_1
Mathlib.RingTheory.WittVector.TeichmullerSeries
Lean.PrettyPrinter.Unexpander
Finset.toRight_union
Mathlib.Data.Finset.Sum
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {u v : Finset (Ξ± βŠ• Ξ²)} [inst : DecidableEq Ξ±] [inst_1 : DecidableEq Ξ²], (u βˆͺ v).toRight = u.toRight βˆͺ v.toRight
HasSum.mul_of_nonarchimedean
Mathlib.Topology.Algebra.InfiniteSum.Nonarchimedean
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {R : Type u_3} [inst : Ring R] [inst_1 : UniformSpace R] [IsUniformAddGroup R] [NonarchimedeanRing R] {f : Ξ± β†’ R} {g : Ξ² β†’ R} {a b : R}, HasSum f a β†’ HasSum g b β†’ HasSum (fun i => f i.1 * g i.2) (a * b)
Asymptotics.isEquivalent_of_tendsto_one
Mathlib.Analysis.Asymptotics.AsymptoticEquivalent
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : NormedField Ξ²] {u v : Ξ± β†’ Ξ²} {l : Filter Ξ±}, (βˆ€αΆ  (x : Ξ±) in l, v x = 0 β†’ u x = 0) β†’ Filter.Tendsto (u / v) l (nhds 1) β†’ Asymptotics.IsEquivalent l u v
Lean.Compiler.LCNF.CSE.State.noConfusion
Lean.Compiler.LCNF.CSE
{P : Sort u} β†’ {x1 x2 : Lean.Compiler.LCNF.CSE.State} β†’ x1 = x2 β†’ Lean.Compiler.LCNF.CSE.State.noConfusionType P x1 x2
Aesop.Queue.mk._flat_ctor
Aesop.Search.Queue.Class
{Q : Type} β†’ BaseIO Q β†’ (Q β†’ Array Aesop.GoalRef β†’ BaseIO Q) β†’ (Q β†’ BaseIO (Option Aesop.GoalRef Γ— Q)) β†’ Aesop.Queue Q
TopologicalSpace.Clopens.coe_inf
Mathlib.Topology.Sets.Closeds
βˆ€ {Ξ± : Type u_2} [inst : TopologicalSpace Ξ±] (s t : TopologicalSpace.Clopens Ξ±), ↑(s βŠ“ t) = ↑s ∩ ↑t
Lean.Elab.Term.StructInst.FieldLHS.fieldIndex.injEq
Lean.Elab.StructInst
βˆ€ (ref : Lean.Syntax) (idx : β„•) (ref_1 : Lean.Syntax) (idx_1 : β„•), (Lean.Elab.Term.StructInst.FieldLHS.fieldIndex ref idx = Lean.Elab.Term.StructInst.FieldLHS.fieldIndex ref_1 idx_1) = (ref = ref_1 ∧ idx = idx_1)
SimpleGraph.center_top
Mathlib.Combinatorics.SimpleGraph.Diam
βˆ€ {Ξ± : Type u_1}, ⊀.center = Set.univ
CategoryTheory.RetractArrow.map_i_left
Mathlib.CategoryTheory.Retract
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {D : Type u'} [inst_1 : CategoryTheory.Category.{v', u'} D] {X Y Z W : C} {f : X ⟢ Y} {g : Z ⟢ W} (h : CategoryTheory.RetractArrow f g) (F : CategoryTheory.Functor C D), (h.map F).i.left = F.map h.i.left
_private.Mathlib.Data.Int.Interval.0.Finset.Ioc_succ_succ._simp_1_2
Mathlib.Data.Int.Interval
βˆ€ {Ξ± : Type u_1} [inst : DecidableEq Ξ±] {s : Finset Ξ±} {a b : Ξ±}, (a ∈ insert b s) = (a = b ∨ a ∈ s)
Finset.filter_subset._simp_1
Mathlib.Data.Finset.Filter
βˆ€ {Ξ± : Type u_1} (p : Ξ± β†’ Prop) [inst : DecidablePred p] (s : Finset Ξ±), (Finset.filter p s βŠ† s) = True
SheafOfModules.hom_ext_iff
Mathlib.Algebra.Category.ModuleCat.Sheaf
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} {X Y : SheafOfModules R} {f g : X ⟢ Y}, f = g ↔ f.val = g.val
MeasureTheory.Adapted.stronglyMeasurable_stoppedProcess_of_discrete
Mathlib.Probability.Process.Stopping
βˆ€ {Ξ© : Type u_1} {Ξ² : Type u_2} {ΞΉ : Type u_3} {m : MeasurableSpace Ξ©} [inst : TopologicalSpace Ξ²] [TopologicalSpace.PseudoMetrizableSpace Ξ²] [inst_2 : Nonempty ΞΉ] [inst_3 : LinearOrder ΞΉ] [inst_4 : TopologicalSpace ΞΉ] [SecondCountableTopology ΞΉ] [OrderTopology ΞΉ] [inst_7 : MeasurableSpace ΞΉ] [BorelSpace ΞΉ] {f : MeasureTheory.Filtration ΞΉ m} {u : ΞΉ β†’ Ξ© β†’ Ξ²} {Ο„ : Ξ© β†’ WithTop ΞΉ} [DiscreteTopology ΞΉ], MeasureTheory.Adapted f u β†’ MeasureTheory.IsStoppingTime f Ο„ β†’ βˆ€ (n : ΞΉ), MeasureTheory.StronglyMeasurable (MeasureTheory.stoppedProcess u Ο„ n)
algebraMap_smul
Mathlib.Algebra.Algebra.Basic
βˆ€ {R : Type u_1} [inst : CommSemiring R] (A : Type u_2) [inst_1 : Semiring A] [inst_2 : Algebra R A] {M : Type u_3} [inst_3 : AddCommMonoid M] [inst_4 : Module A M] [inst_5 : Module R M] [IsScalarTower R A M] (r : R) (m : M), (algebraMap R A) r β€’ m = r β€’ m
pi_generateFrom_eq_finite
Mathlib.Topology.Constructions
βˆ€ {ΞΉ : Type u_5} {X : ΞΉ β†’ Type u_9} {g : (a : ΞΉ) β†’ Set (Set (X a))} [Finite ΞΉ], (βˆ€ (a : ΞΉ), ⋃₀ g a = Set.univ) β†’ Pi.topologicalSpace = TopologicalSpace.generateFrom {t | βˆƒ s, (βˆ€ (a : ΞΉ), s a ∈ g a) ∧ t = Set.univ.pi s}
_private.Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Proper.0.AlgebraicGeometry.Proj.valuativeCriterion_existence_aux._simp_1_11
Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Proper
βˆ€ {R : Type u_1} [inst : CommRing R] {K : Type u_5} [inst_1 : CommRing K] [inst_2 : Algebra R K] [IsFractionRing R K] {a b : R}, (↑a = ↑b) = (a = b)
TwoSidedIdeal.asIdealOpposite
Mathlib.RingTheory.TwoSidedIdeal.Operations
{R : Type u_1} β†’ [inst : Ring R] β†’ TwoSidedIdeal R β†’o Ideal Rᡐᡒᡖ
Std.MaxEqOr
Init.Data.Order.Classes
(Ξ± : Type u) β†’ [Max Ξ±] β†’ Prop
BitVec.ofInt_iSizeToInt
Init.Data.SInt.Lemmas
βˆ€ (x : ISize), BitVec.ofInt System.Platform.numBits x.toInt = x.toBitVec
Btw.rec
Mathlib.Order.Circular
{Ξ± : Type u_1} β†’ {motive : Btw Ξ± β†’ Sort u} β†’ ((btw : Ξ± β†’ Ξ± β†’ Ξ± β†’ Prop) β†’ motive { btw := btw }) β†’ (t : Btw Ξ±) β†’ motive t
MeasureTheory.LevyProkhorov.levyProkhorovDist_metricSpace_probabilityMeasure._simp_1
Mathlib.MeasureTheory.Measure.LevyProkhorovMetric
βˆ€ (x : ENNReal), (x.toReal = 0) = (x = 0 ∨ x = ⊀)
MeasurableSpace.DynkinSystem.instPartialOrder._proof_3
Mathlib.MeasureTheory.PiSystem
βˆ€ {Ξ± : Type u_1} (a b : MeasurableSpace.DynkinSystem Ξ±), a ≀ b ∧ Β¬b ≀ a ↔ a ≀ b ∧ Β¬b ≀ a
Std.DTreeMap.Internal.Impl.getKey._sunfold
Std.Data.DTreeMap.Internal.Queries
{Ξ± : Type u} β†’ {Ξ² : Ξ± β†’ Type v} β†’ [inst : Ord Ξ±] β†’ (t : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β†’ (k : Ξ±) β†’ Std.DTreeMap.Internal.Impl.contains k t = true β†’ Ξ±