name
string
module
string
type
string
Polynomial.instIsJacobsonRing
Mathlib.RingTheory.Jacobson.Ring
βˆ€ {R : Type u_1} [inst : CommRing R] [IsJacobsonRing R], IsJacobsonRing (Polynomial R)
fintypeNodupList._simp_3
Mathlib.Data.Fintype.List
βˆ€ {Ξ± : Type u_1} {a : Ξ±} {s : Multiset Ξ±} {nd : s.Nodup}, (a ∈ { val := s, nodup := nd }) = (a ∈ s)
LinearMap.ofIsComplProdEquiv._proof_2
Mathlib.LinearAlgebra.Projection
βˆ€ {E : Type u_2} [inst : AddCommGroup E] {F : Type u_1} [inst_1 : AddCommGroup F] {R₁ : Type u_3} [inst_2 : CommRing R₁] [inst_3 : Module R₁ E] [inst_4 : Module R₁ F] {p q : Submodule R₁ E} (h : IsCompl p q) (Ο† : (β†₯p β†’β‚—[R₁] F) Γ— (β†₯q β†’β‚—[R₁] F)), (((LinearMap.ofIsComplProd h).toFun Ο†).domRestrict p, ((LinearMap.ofIsComplProd h).toFun Ο†).domRestrict q) = Ο†
IsRelPrime.neg_right
Mathlib.RingTheory.Coprime.Basic
βˆ€ {R : Type u_1} [inst : CommRing R] {x y : R}, IsRelPrime x y β†’ IsRelPrime x (-y)
Mathlib.Tactic.BicategoryLike.IsoLift.mk._flat_ctor
Mathlib.Tactic.CategoryTheory.Coherence.Datatypes
Mathlib.Tactic.BicategoryLike.Morβ‚‚Iso β†’ Lean.Expr β†’ Mathlib.Tactic.BicategoryLike.IsoLift
Representation.invtSubmodule.instBoundedOrderSubtypeSubmoduleMemSublattice.match_1
Mathlib.RepresentationTheory.Submodule
βˆ€ {k : Type u_2} {G : Type u_3} {V : Type u_1} [inst : CommSemiring k] [inst_1 : Monoid G] [inst_2 : AddCommMonoid V] [inst_3 : Module k V] (ρ : Representation k G V) (motive : β†₯ρ.invtSubmodule β†’ Prop) (x : β†₯ρ.invtSubmodule), (βˆ€ (p : Submodule k V) (hp : p ∈ ρ.invtSubmodule), motive ⟨p, hp⟩) β†’ motive x
Equiv.Perm.IsCycle.zpowersEquivSupport.congr_simp
Mathlib.GroupTheory.Perm.Cycle.Basic
βˆ€ {Ξ± : Type u_2} [inst : DecidableEq Ξ±] [inst_1 : Fintype Ξ±] {Οƒ : Equiv.Perm Ξ±} (hΟƒ : Οƒ.IsCycle), hΟƒ.zpowersEquivSupport = hΟƒ.zpowersEquivSupport
ModelWithCorners.continuous_invFun
Mathlib.Geometry.Manifold.IsManifold.Basic
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {H : Type u_3} [inst_3 : TopologicalSpace H] (self : ModelWithCorners π•œ E H), Continuous self.invFun
Std.TreeMap.getKey?_insertManyIfNewUnit_list_of_not_mem_of_mem
Std.Data.TreeMap.Lemmas
βˆ€ {Ξ± : Type u} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.TreeMap Ξ± Unit cmp} [Std.TransCmp cmp] {l : List Ξ±} {k k' : Ξ±}, cmp k k' = Ordering.eq β†’ k βˆ‰ t β†’ List.Pairwise (fun a b => Β¬cmp a b = Ordering.eq) l β†’ k ∈ l β†’ (t.insertManyIfNewUnit l).getKey? k' = some k
AlgEquiv.autCongr_trans
Mathlib.Algebra.Algebra.Equiv
βˆ€ {R : Type uR} {A₁ : Type uA₁} {Aβ‚‚ : Type uAβ‚‚} {A₃ : Type uA₃} [inst : CommSemiring R] [inst_1 : Semiring A₁] [inst_2 : Semiring Aβ‚‚] [inst_3 : Semiring A₃] [inst_4 : Algebra R A₁] [inst_5 : Algebra R Aβ‚‚] [inst_6 : Algebra R A₃] (Ο• : A₁ ≃ₐ[R] Aβ‚‚) (ψ : Aβ‚‚ ≃ₐ[R] A₃), Ο•.autCongr.trans ψ.autCongr = (Ο•.trans ψ).autCongr
Set.image_subset_iff
Mathlib.Data.Set.Image
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {s : Set Ξ±} {t : Set Ξ²} {f : Ξ± β†’ Ξ²}, f '' s βŠ† t ↔ s βŠ† f ⁻¹' t
AlgebraicGeometry.Scheme.Opens.fromSpecStalkOfMem_toSpecΞ“_assoc
Mathlib.AlgebraicGeometry.Stalk
βˆ€ {X : AlgebraicGeometry.Scheme} (U : X.Opens) (x : β†₯X) (hxU : x ∈ U) {Z : AlgebraicGeometry.Scheme} (h : AlgebraicGeometry.Spec (X.presheaf.obj (Opposite.op U)) ⟢ Z), CategoryTheory.CategoryStruct.comp (U.fromSpecStalkOfMem x hxU) (CategoryTheory.CategoryStruct.comp U.toSpecΞ“ h) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Spec.map (X.presheaf.germ U x hxU)) h
ISize
Init.Data.SInt.Basic
Type
ContinuousMap.Homotopy.affine_apply
Mathlib.Topology.Homotopy.Affine
βˆ€ {X : Type u_1} {E : Type u_2} [inst : TopologicalSpace X] [inst_1 : AddCommGroup E] [inst_2 : TopologicalSpace E] [inst_3 : IsTopologicalAddGroup E] [inst_4 : Module ℝ E] [inst_5 : ContinuousSMul ℝ E] (f g : C(X, E)) (x : ↑unitInterval Γ— X), (ContinuousMap.Homotopy.affine f g) x = (AffineMap.lineMap (f x.2) (g x.2)) ↑x.1
_private.Lean.Meta.MkIffOfInductiveProp.0.Lean.Meta.constrToProp.match_3
Lean.Meta.MkIffOfInductiveProp
(motive : Option β„• Γ— Lean.Expr β†’ Sort u_1) β†’ (__discr : Option β„• Γ— Lean.Expr) β†’ ((n : Option β„•) β†’ (r : Lean.Expr) β†’ motive (n, r)) β†’ motive __discr
TensorProduct.Neg.aux
Mathlib.LinearAlgebra.TensorProduct.Basic
(R : Type u_1) β†’ [inst : CommSemiring R] β†’ {M : Type u_2} β†’ {N : Type u_3} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : AddCommMonoid N] β†’ [inst_3 : Module R M] β†’ [inst_4 : Module R N] β†’ TensorProduct R M N β†’β‚—[R] TensorProduct R M N
CategoryTheory.eqToIso
Mathlib.CategoryTheory.EqToHom
{C : Type u₁} β†’ [inst : CategoryTheory.Category.{v₁, u₁} C] β†’ {X Y : C} β†’ X = Y β†’ (X β‰… Y)
Lean.Elab.instInhabitedDefView
Lean.Elab.DefView
Inhabited Lean.Elab.DefView
ZMod.charZero
Mathlib.Data.ZMod.Basic
CharZero (ZMod 0)
ENNReal.tendsto_inv_iff
Mathlib.Topology.Instances.ENNReal.Lemmas
βˆ€ {Ξ± : Type u_1} {f : Filter Ξ±} {m : Ξ± β†’ ENNReal} {a : ENNReal}, Filter.Tendsto (fun x => (m x)⁻¹) f (nhds a⁻¹) ↔ Filter.Tendsto m f (nhds a)
Besicovitch.SatelliteConfig.mk.inj
Mathlib.MeasureTheory.Covering.Besicovitch
βˆ€ {Ξ± : Type u_1} {inst : MetricSpace Ξ±} {N : β„•} {Ο„ : ℝ} {c : Fin N.succ β†’ Ξ±} {r : Fin N.succ β†’ ℝ} {rpos : βˆ€ (i : Fin N.succ), 0 < r i} {h : Pairwise fun i j => r i ≀ dist (c i) (c j) ∧ r j ≀ Ο„ * r i ∨ r j ≀ dist (c j) (c i) ∧ r i ≀ Ο„ * r j} {hlast : βˆ€ i < Fin.last N, r i ≀ dist (c i) (c (Fin.last N)) ∧ r (Fin.last N) ≀ Ο„ * r i} {inter : βˆ€ i < Fin.last N, dist (c i) (c (Fin.last N)) ≀ r i + r (Fin.last N)} {c_1 : Fin N.succ β†’ Ξ±} {r_1 : Fin N.succ β†’ ℝ} {rpos_1 : βˆ€ (i : Fin N.succ), 0 < r_1 i} {h_1 : Pairwise fun i j => r_1 i ≀ dist (c_1 i) (c_1 j) ∧ r_1 j ≀ Ο„ * r_1 i ∨ r_1 j ≀ dist (c_1 j) (c_1 i) ∧ r_1 i ≀ Ο„ * r_1 j} {hlast_1 : βˆ€ i < Fin.last N, r_1 i ≀ dist (c_1 i) (c_1 (Fin.last N)) ∧ r_1 (Fin.last N) ≀ Ο„ * r_1 i} {inter_1 : βˆ€ i < Fin.last N, dist (c_1 i) (c_1 (Fin.last N)) ≀ r_1 i + r_1 (Fin.last N)}, { c := c, r := r, rpos := rpos, h := h, hlast := hlast, inter := inter } = { c := c_1, r := r_1, rpos := rpos_1, h := h_1, hlast := hlast_1, inter := inter_1 } β†’ c = c_1 ∧ r = r_1
ProbabilityTheory.Kernel.withDensity_rnDeriv_of_subset_mutuallySingularSetSlice
Mathlib.Probability.Kernel.RadonNikodym
βˆ€ {Ξ± : Type u_1} {Ξ³ : Type u_2} {mΞ± : MeasurableSpace Ξ±} {mΞ³ : MeasurableSpace Ξ³} {ΞΊ Ξ· : ProbabilityTheory.Kernel Ξ± Ξ³} [hΞ±Ξ³ : MeasurableSpace.CountableOrCountablyGenerated Ξ± Ξ³] [ProbabilityTheory.IsFiniteKernel ΞΊ] [inst : ProbabilityTheory.IsFiniteKernel Ξ·] {a : Ξ±} {s : Set Ξ³}, s βŠ† ΞΊ.mutuallySingularSetSlice Ξ· a β†’ ((Ξ·.withDensity (ΞΊ.rnDeriv Ξ·)) a) s = 0
Hindman.FS.brecOn
Mathlib.Combinatorics.Hindman
βˆ€ {M : Type u_1} [inst : AddSemigroup M] {motive : (a : Stream' M) β†’ (a_1 : M) β†’ Hindman.FS a a_1 β†’ Prop} {a : Stream' M} {a_1 : M} (t : Hindman.FS a a_1), (βˆ€ (a : Stream' M) (a_2 : M) (t : Hindman.FS a a_2), Hindman.FS.below t β†’ motive a a_2 t) β†’ motive a a_1 t
Lean.PersistentHashMap.Entry.ctorElimType
Lean.Data.PersistentHashMap
{Ξ± : Type u} β†’ {Ξ² : Type v} β†’ {Οƒ : Type w} β†’ {motive : Lean.PersistentHashMap.Entry Ξ± Ξ² Οƒ β†’ Sort u_1} β†’ β„• β†’ Sort (max 1 u_1 (imax (u + 1) (v + 1) u_1) (imax (w + 1) u_1))
SimpleGraph.TripartiteFromTriangles.Graph.in₂₁_iff._simp_1
Mathlib.Combinatorics.SimpleGraph.Triangle.Tripartite
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} {t : Finset (Ξ± Γ— Ξ² Γ— Ξ³)} {b : Ξ²} {c : Ξ³}, (SimpleGraph.TripartiteFromTriangles.graph t).Adj (Sum3.inβ‚‚ c) (Sum3.in₁ b) = βˆƒ a, (a, b, c) ∈ t
GradeMinOrder.recOn
Mathlib.Order.Grade
{𝕆 : Type u_5} β†’ {Ξ± : Type u_6} β†’ [inst : Preorder 𝕆] β†’ [inst_1 : Preorder Ξ±] β†’ {motive : GradeMinOrder 𝕆 Ξ± β†’ Sort u} β†’ (t : GradeMinOrder 𝕆 Ξ±) β†’ ([toGradeOrder : GradeOrder 𝕆 Ξ±] β†’ (isMin_grade : βˆ€ ⦃a : α⦄, IsMin a β†’ IsMin (GradeOrder.grade a)) β†’ motive { toGradeOrder := toGradeOrder, isMin_grade := isMin_grade }) β†’ motive t
Aesop.RulePatternIndex.recOn
Aesop.Index.RulePattern
{motive : Aesop.RulePatternIndex β†’ Sort u} β†’ (t : Aesop.RulePatternIndex) β†’ ((tree : Lean.Meta.DiscrTree Aesop.RulePatternIndex.Entry) β†’ (isEmpty : Bool) β†’ motive { tree := tree, isEmpty := isEmpty }) β†’ motive t
CategoryTheory.GrothendieckTopology.instIsGeneratedByOneHypercovers
Mathlib.CategoryTheory.Sites.Hypercover.IsSheaf
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C), J.IsGeneratedByOneHypercovers
_private.Mathlib.Order.OrderIsoNat.0.RelEmbedding.wellFounded_iff_isEmpty.match_1_1
Mathlib.Order.OrderIsoNat
βˆ€ {Ξ± : Type u_1} {r : Ξ± β†’ Ξ± β†’ Prop} (motive : WellFounded r β†’ Prop) (x : WellFounded r), (βˆ€ (h : βˆ€ (a : Ξ±), Acc r a), motive β‹―) β†’ motive x
Polynomial.Chebyshev.S_two_mul_complex_cosh
Mathlib.Analysis.SpecialFunctions.Trigonometric.Chebyshev
βˆ€ (ΞΈ : β„‚) (n : β„€), Polynomial.eval (2 * Complex.cosh ΞΈ) (Polynomial.Chebyshev.S β„‚ n) * Complex.sinh ΞΈ = Complex.sinh ((↑n + 1) * ΞΈ)
NumberField.InfinitePlace.embedding_of_isReal_apply
Mathlib.NumberTheory.NumberField.InfinitePlace.Basic
βˆ€ {K : Type u_2} [inst : Field K] {w : NumberField.InfinitePlace K} (hw : w.IsReal) (x : K), ↑((NumberField.InfinitePlace.embedding_of_isReal hw) x) = w.embedding x
Std.HashMap.contains_keysArray
Std.Data.HashMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {m : Std.HashMap Ξ± Ξ²} [EquivBEq Ξ±] [LawfulHashable Ξ±] {k : Ξ±}, m.keysArray.contains k = m.contains k
ContinuousInv.measurableInv
Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
βˆ€ {Ξ³ : Type u_3} [inst : TopologicalSpace Ξ³] [inst_1 : MeasurableSpace Ξ³] [BorelSpace Ξ³] [inst_3 : Inv Ξ³] [ContinuousInv Ξ³], MeasurableInv Ξ³
Homotopy.compLeftId
Mathlib.Algebra.Homology.Homotopy
{ΞΉ : Type u_1} β†’ {V : Type u} β†’ [inst : CategoryTheory.Category.{v, u} V] β†’ [inst_1 : CategoryTheory.Preadditive V] β†’ {c : ComplexShape ΞΉ} β†’ {C D : HomologicalComplex V c} β†’ {f : D ⟢ D} β†’ Homotopy f (CategoryTheory.CategoryStruct.id D) β†’ (g : C ⟢ D) β†’ Homotopy (CategoryTheory.CategoryStruct.comp g f) g
CategoryTheory.Join.mapWhiskerRight_rightUnitor_hom
Mathlib.CategoryTheory.Join.Pseudofunctor
βˆ€ {A : Type u_1} {B : Type u_2} (C : Type u_3) [inst : CategoryTheory.Category.{u_6, u_1} A] [inst_1 : CategoryTheory.Category.{u_7, u_2} B] [inst_2 : CategoryTheory.Category.{u_8, u_3} C] (F : CategoryTheory.Functor A B), CategoryTheory.Join.mapWhiskerRight F.rightUnitor.hom (CategoryTheory.Functor.id C) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Join.mapCompLeft C F (CategoryTheory.Functor.id B)).hom (CategoryTheory.CategoryStruct.comp ((CategoryTheory.Join.mapPair F (CategoryTheory.Functor.id C)).whiskerLeft CategoryTheory.Join.mapPairId.hom) (CategoryTheory.Join.mapPair F (CategoryTheory.Functor.id C)).rightUnitor.hom)
Std.TreeMap.Raw._sizeOf_inst
Std.Data.TreeMap.Raw.Basic
(Ξ± : Type u) β†’ (Ξ² : Type v) β†’ (cmp : autoParam (Ξ± β†’ Ξ± β†’ Ordering) _auto✝) β†’ [SizeOf Ξ±] β†’ [SizeOf Ξ²] β†’ SizeOf (Std.TreeMap.Raw Ξ± Ξ² cmp)
OrderAddMonoidHom.instAddOfIsOrderedAddMonoid.eq_1
Mathlib.Algebra.Order.Hom.Monoid
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : AddCommMonoid Ξ±] [inst_1 : PartialOrder Ξ±] [inst_2 : AddCommMonoid Ξ²] [inst_3 : PartialOrder Ξ²] [inst_4 : IsOrderedAddMonoid Ξ²], OrderAddMonoidHom.instAddOfIsOrderedAddMonoid = { add := fun f g => let __src := ↑f + ↑g; { toAddMonoidHom := __src, monotone' := β‹― } }
CategoryTheory.Limits.opProdIsoCoprod_inv_inl
Mathlib.CategoryTheory.Limits.Shapes.Opposites.Products
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {A B : C} [inst_1 : CategoryTheory.Limits.HasBinaryProduct A B], CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.opProdIsoCoprod A B).inv.unop CategoryTheory.Limits.coprod.inl.unop = CategoryTheory.Limits.prod.fst
TopologicalSpace.IsTopologicalBasis.isOpen_iff
Mathlib.Topology.Bases
βˆ€ {Ξ± : Type u} [t : TopologicalSpace Ξ±] {s : Set Ξ±} {b : Set (Set Ξ±)}, TopologicalSpace.IsTopologicalBasis b β†’ (IsOpen s ↔ βˆ€ a ∈ s, βˆƒ t ∈ b, a ∈ t ∧ t βŠ† s)
AddCon.addMonoid._proof_1
Mathlib.GroupTheory.Congruence.Defs
βˆ€ {M : Type u_1} [inst : AddMonoid M] (c : AddCon M), Function.Surjective Quotient.mk''
SimpleGraph.bot_adj
Mathlib.Combinatorics.SimpleGraph.Basic
βˆ€ {V : Type u} (v w : V), βŠ₯.Adj v w ↔ False
Subring.mem_pointwise_smul_iff_inv_smul_mem
Mathlib.Algebra.Ring.Subring.Pointwise
βˆ€ {M : Type u_1} {R : Type u_2} [inst : Group M] [inst_1 : Ring R] [inst_2 : MulSemiringAction M R] {a : M} {S : Subring R} {x : R}, x ∈ a β€’ S ↔ a⁻¹ β€’ x ∈ S
CategoryTheory.Grp.hom_one
Mathlib.CategoryTheory.Monoidal.Cartesian.Grp_
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.CartesianMonoidalCategory C] [inst_2 : CategoryTheory.BraidedCategory C] (H : CategoryTheory.Grp C) [inst_3 : CategoryTheory.IsCommMonObj H.X], CategoryTheory.MonObj.one.hom = CategoryTheory.MonObj.one
Aesop.Hyp.mk
Aesop.Forward.State
Option Lean.FVarId β†’ Aesop.Substitution β†’ Aesop.Hyp
TypeVec.splitFun
Mathlib.Data.TypeVec
{n : β„•} β†’ {Ξ± : TypeVec.{u_1} (n + 1)} β†’ {Ξ±' : TypeVec.{u_2} (n + 1)} β†’ Ξ±.drop.Arrow Ξ±'.drop β†’ (Ξ±.last β†’ Ξ±'.last) β†’ Ξ±.Arrow Ξ±'
Lean.Elab.CommandContextInfo.mk.injEq
Lean.Elab.InfoTree.Types
βˆ€ (env : Lean.Environment) (fileMap : Lean.FileMap) (mctx : Lean.MetavarContext) (options : Lean.Options) (currNamespace : Lean.Name) (openDecls : List Lean.OpenDecl) (ngen : Lean.NameGenerator) (env_1 : Lean.Environment) (fileMap_1 : Lean.FileMap) (mctx_1 : Lean.MetavarContext) (options_1 : Lean.Options) (currNamespace_1 : Lean.Name) (openDecls_1 : List Lean.OpenDecl) (ngen_1 : Lean.NameGenerator), ({ env := env, fileMap := fileMap, mctx := mctx, options := options, currNamespace := currNamespace, openDecls := openDecls, ngen := ngen } = { env := env_1, fileMap := fileMap_1, mctx := mctx_1, options := options_1, currNamespace := currNamespace_1, openDecls := openDecls_1, ngen := ngen_1 }) = (env = env_1 ∧ fileMap = fileMap_1 ∧ mctx = mctx_1 ∧ options = options_1 ∧ currNamespace = currNamespace_1 ∧ openDecls = openDecls_1 ∧ ngen = ngen_1)
PowerSeries.coeff_pow
Mathlib.RingTheory.PowerSeries.Basic
βˆ€ {R : Type u_2} [inst : CommSemiring R] (k n : β„•) (Ο† : PowerSeries R), (PowerSeries.coeff n) (Ο† ^ k) = βˆ‘ l ∈ (Finset.range k).finsuppAntidiag n, ∏ i ∈ Finset.range k, (PowerSeries.coeff (l i)) Ο†
fderivWithin_inter
Mathlib.Analysis.Calculus.FDeriv.Basic
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type u_3} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] {f : E β†’ F} {x : E} {s t : Set E}, t ∈ nhds x β†’ fderivWithin π•œ f (s ∩ t) x = fderivWithin π•œ f s x
_private.Mathlib.Order.Category.BoolAlg.0.BoolAlg.Hom.mk.injEq
Mathlib.Order.Category.BoolAlg
βˆ€ {X Y : BoolAlg} (hom' hom'_1 : BoundedLatticeHom ↑X ↑Y), ({ hom' := hom' } = { hom' := hom'_1 }) = (hom' = hom'_1)
LieDerivation.instModule.congr_simp
Mathlib.Algebra.Lie.Derivation.Basic
βˆ€ {R : Type u_1} {L : Type u_2} {M : Type u_3} [inst : CommRing R] [inst_1 : LieRing L] [inst_2 : LieAlgebra R L] [inst_3 : AddCommGroup M] [inst_4 : Module R M] [inst_5 : LieRingModule L M] [inst_6 : LieModule R L M] {S : Type u_4} [inst_7 : Semiring S] [inst_8 : Module S M] [inst_9 : SMulCommClass R S M] [inst_10 : LieDerivation.SMulBracketCommClass S L M], LieDerivation.instModule = LieDerivation.instModule
_private.Lean.Elab.MutualInductive.0.Lean.Elab.Command.levelMVarToParam
Lean.Elab.MutualInductive
List Lean.InductiveType β†’ Option Lean.LMVarId β†’ Lean.Elab.TermElabM (List Lean.InductiveType)
_private.Mathlib.Geometry.Manifold.VectorBundle.Hom.0.ContMDiffWithinAt.clm_bundle_apply._simp_1_1
Mathlib.Geometry.Manifold.VectorBundle.Hom
βˆ€ {π•œ : Type u_1} {B : Type u_2} {F₁ : Type u_3} {Fβ‚‚ : Type u_4} {M : Type u_5} {n : WithTop β„•βˆž} {E₁ : B β†’ Type u_6} {Eβ‚‚ : B β†’ Type u_7} [inst : NontriviallyNormedField π•œ] [inst_1 : (x : B) β†’ AddCommGroup (E₁ x)] [inst_2 : (x : B) β†’ Module π•œ (E₁ x)] [inst_3 : NormedAddCommGroup F₁] [inst_4 : NormedSpace π•œ F₁] [inst_5 : TopologicalSpace (Bundle.TotalSpace F₁ E₁)] [inst_6 : (x : B) β†’ TopologicalSpace (E₁ x)] [inst_7 : (x : B) β†’ AddCommGroup (Eβ‚‚ x)] [inst_8 : (x : B) β†’ Module π•œ (Eβ‚‚ x)] [inst_9 : NormedAddCommGroup Fβ‚‚] [inst_10 : NormedSpace π•œ Fβ‚‚] [inst_11 : TopologicalSpace (Bundle.TotalSpace Fβ‚‚ Eβ‚‚)] [inst_12 : (x : B) β†’ TopologicalSpace (Eβ‚‚ x)] {EB : Type u_8} [inst_13 : NormedAddCommGroup EB] [inst_14 : NormedSpace π•œ EB] {HB : Type u_9} [inst_15 : TopologicalSpace HB] {IB : ModelWithCorners π•œ EB HB} [inst_16 : TopologicalSpace B] [inst_17 : ChartedSpace HB B] {EM : Type u_10} [inst_18 : NormedAddCommGroup EM] [inst_19 : NormedSpace π•œ EM] {HM : Type u_11} [inst_20 : TopologicalSpace HM] {IM : ModelWithCorners π•œ EM HM} [inst_21 : TopologicalSpace M] [inst_22 : ChartedSpace HM M] [inst_23 : FiberBundle F₁ E₁] [inst_24 : VectorBundle π•œ F₁ E₁] [inst_25 : FiberBundle Fβ‚‚ Eβ‚‚] [inst_26 : VectorBundle π•œ Fβ‚‚ Eβ‚‚] [inst_27 : βˆ€ (x : B), IsTopologicalAddGroup (Eβ‚‚ x)] [inst_28 : βˆ€ (x : B), ContinuousSMul π•œ (Eβ‚‚ x)] (f : M β†’ Bundle.TotalSpace (F₁ β†’L[π•œ] Fβ‚‚) fun b => E₁ b β†’L[π•œ] Eβ‚‚ b) {s : Set M} {xβ‚€ : M}, ContMDiffWithinAt IM (IB.prod (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] Fβ‚‚))) n f s xβ‚€ = (ContMDiffWithinAt IM IB n (fun x => (f x).proj) s xβ‚€ ∧ ContMDiffWithinAt IM (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] Fβ‚‚)) n (fun x => ContinuousLinearMap.inCoordinates F₁ E₁ Fβ‚‚ Eβ‚‚ β‹― β‹― β‹― β‹― β‹―) s xβ‚€)
Std.ExtHashSet.contains_of_contains_insert'
Std.Data.ExtHashSet.Lemmas
βˆ€ {Ξ± : Type u} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {m : Std.ExtHashSet Ξ±} [inst : EquivBEq Ξ±] [inst_1 : LawfulHashable Ξ±] {k a : Ξ±}, (m.insert k).contains a = true β†’ Β¬((k == a) = true ∧ m.contains k = false) β†’ m.contains a = true
AddCommGrpCat.epi_iff_range_eq_top
Mathlib.Algebra.Category.Grp.EpiMono
βˆ€ {A B : AddCommGrpCat} (f : A ⟢ B), CategoryTheory.Epi f ↔ (AddCommGrpCat.Hom.hom f).range = ⊀
_private.Mathlib.Algebra.Order.Archimedean.Basic.0.archimedean_iff_nat_le.match_1_1
Mathlib.Algebra.Order.Archimedean.Basic
βˆ€ {K : Type u_1} [inst : Field K] [inst_1 : LinearOrder K] (x : K) (motive : (βˆƒ n, x ≀ ↑n) β†’ Prop) (x_1 : βˆƒ n, x ≀ ↑n), (βˆ€ (n : β„•) (h : x ≀ ↑n), motive β‹―) β†’ motive x_1
Lean.Elab.Visibility.private.elim
Lean.Elab.DeclModifiers
{motive : Lean.Elab.Visibility β†’ Sort u} β†’ (t : Lean.Elab.Visibility) β†’ t.ctorIdx = 1 β†’ motive Lean.Elab.Visibility.private β†’ motive t
Finset.Icc_ofDual
Mathlib.Order.Interval.Finset.Defs
βˆ€ {Ξ± : Type u_1} [inst : Preorder Ξ±] [inst_1 : LocallyFiniteOrder Ξ±] (a b : Ξ±α΅’α΅ˆ), Finset.Icc (OrderDual.ofDual a) (OrderDual.ofDual b) = Finset.map OrderDual.ofDual.toEmbedding (Finset.Icc b a)
_private.Mathlib.NumberTheory.ModularForms.EisensteinSeries.Summable.0.EisensteinSeries.div_max_sq_ge_one._simp_1_4
Mathlib.NumberTheory.ModularForms.EisensteinSeries.Summable
βˆ€ {Ξ± : Type u_1} [inst : Preorder Ξ±] (a : Ξ±), (a ≀ a) = True
DoubleCoset.eq_of_not_disjoint
Mathlib.GroupTheory.DoubleCoset
βˆ€ {G : Type u_1} [inst : Group G] {H K : Subgroup G} {a b : G}, Β¬Disjoint (DoubleCoset.doubleCoset a ↑H ↑K) (DoubleCoset.doubleCoset b ↑H ↑K) β†’ DoubleCoset.doubleCoset a ↑H ↑K = DoubleCoset.doubleCoset b ↑H ↑K
Mathlib.Tactic.Bicategory.naturality_inv
Mathlib.Tactic.CategoryTheory.Bicategory.PureCoherence
βˆ€ {B : Type u} [inst : CategoryTheory.Bicategory B] {a b c : B} {p : a ⟢ b} {f g : b ⟢ c} {pf : a ⟢ c} {Ξ· : f β‰… g} (Ξ·_f : CategoryTheory.CategoryStruct.comp p f β‰… pf) (Ξ·_g : CategoryTheory.CategoryStruct.comp p g β‰… pf), CategoryTheory.Bicategory.whiskerLeftIso p Ξ· β‰ͺ≫ Ξ·_g = Ξ·_f β†’ CategoryTheory.Bicategory.whiskerLeftIso p Ξ·.symm β‰ͺ≫ Ξ·_f = Ξ·_g
ISize.div_self
Init.Data.SInt.Lemmas
βˆ€ {a : ISize}, a / a = if a = 0 then 0 else 1
Affine.Simplex.altitudeFoot_mem_affineSpan_image_compl
Mathlib.Geometry.Euclidean.Altitude
βˆ€ {V : Type u_1} {P : Type u_2} [inst : NormedAddCommGroup V] [inst_1 : InnerProductSpace ℝ V] [inst_2 : MetricSpace P] [inst_3 : NormedAddTorsor V P] {n : β„•} [inst_4 : NeZero n] (s : Affine.Simplex ℝ P n) (i : Fin (n + 1)), s.altitudeFoot i ∈ affineSpan ℝ (s.points '' {i}ᢜ)
One.toOfNat1.hcongr_2
Mathlib.GroupTheory.CoprodI
βˆ€ (Ξ± Ξ±' : Type u_1), Ξ± = Ξ±' β†’ βˆ€ (inst : One Ξ±) (inst' : One Ξ±'), inst ≍ inst' β†’ One.toOfNat1 ≍ One.toOfNat1
CategoryTheory.RetractArrow.left_i
Mathlib.CategoryTheory.Retract
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {X Y Z W : C} {f : X ⟢ Y} {g : Z ⟢ W} (h : CategoryTheory.RetractArrow f g), h.left.i = h.i.left
_private.Lean.Meta.Tactic.Grind.Arith.Cutsat.Search.0.Lean.Meta.Grind.Arith.Cutsat.CooperSplit.assert.match_1
Lean.Meta.Tactic.Grind.Arith.Cutsat.Search
(motive : Option Lean.Meta.Grind.Arith.Cutsat.DvdCnstr β†’ Sort u_1) β†’ (c₃? : Option Lean.Meta.Grind.Arith.Cutsat.DvdCnstr) β†’ ((c₃ : Lean.Meta.Grind.Arith.Cutsat.DvdCnstr) β†’ motive (some c₃)) β†’ ((x : Option Lean.Meta.Grind.Arith.Cutsat.DvdCnstr) β†’ motive x) β†’ motive c₃?
CategoryTheory.Limits.MulticospanIndex.sectionsEquiv._proof_5
Mathlib.CategoryTheory.Limits.Types.Multiequalizer
βˆ€ {J : CategoryTheory.Limits.MulticospanShape} (I : CategoryTheory.Limits.MulticospanIndex J (Type u_3)) (s : ↑I.multicospan.sections) {j j' : CategoryTheory.Limits.WalkingMulticospan J} (f : j ⟢ j'), I.multicospan.map f (match j with | CategoryTheory.Limits.WalkingMulticospan.left i => { val := fun i => ↑s (CategoryTheory.Limits.WalkingMulticospan.left i), property := β‹― }.val i | CategoryTheory.Limits.WalkingMulticospan.right j => I.fst j ({ val := fun i => ↑s (CategoryTheory.Limits.WalkingMulticospan.left i), property := β‹― }.val (J.fst j))) = match j' with | CategoryTheory.Limits.WalkingMulticospan.left i => { val := fun i => ↑s (CategoryTheory.Limits.WalkingMulticospan.left i), property := β‹― }.val i | CategoryTheory.Limits.WalkingMulticospan.right j => I.fst j ({ val := fun i => ↑s (CategoryTheory.Limits.WalkingMulticospan.left i), property := β‹― }.val (J.fst j))
Std.ExtTreeSet.self_le_max?_insert
Std.Data.ExtTreeSet.Lemmas
βˆ€ {Ξ± : Type u} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.ExtTreeSet Ξ± cmp} [inst : Std.TransCmp cmp] {k kmi : Ξ±}, (t.insert k).max?.get β‹― = kmi β†’ (cmp k kmi).isLE = true
_private.Batteries.Data.Fin.Lemmas.0.Fin.exists_eq_some_of_findSome?_eq_some._proof_1_1
Batteries.Data.Fin.Lemmas
βˆ€ {n : β„•} {Ξ± : Type u_1} {x : Ξ±} {f : Fin n β†’ Option Ξ±}, Fin.findSome? f = some x β†’ βˆƒ i, f i = some x
_private.Mathlib.LinearAlgebra.TensorAlgebra.Basic.0.TensorAlgebra.wrapped._proof_1._@.Mathlib.LinearAlgebra.TensorAlgebra.Basic.4207585102._hygCtx._hyg.2
Mathlib.LinearAlgebra.TensorAlgebra.Basic
TensorAlgebra.definition✝ = TensorAlgebra.definition✝
DirectSum.Decomposition.casesOn
Mathlib.Algebra.DirectSum.Decomposition
{ΞΉ : Type u_1} β†’ {M : Type u_3} β†’ {Οƒ : Type u_4} β†’ [inst : DecidableEq ΞΉ] β†’ [inst_1 : AddCommMonoid M] β†’ [inst_2 : SetLike Οƒ M] β†’ [inst_3 : AddSubmonoidClass Οƒ M] β†’ {β„³ : ΞΉ β†’ Οƒ} β†’ {motive : DirectSum.Decomposition β„³ β†’ Sort u} β†’ (t : DirectSum.Decomposition β„³) β†’ ((decompose' : M β†’ DirectSum ΞΉ fun i => β†₯(β„³ i)) β†’ (left_inv : Function.LeftInverse (⇑(DirectSum.coeAddMonoidHom β„³)) decompose') β†’ (right_inv : Function.RightInverse (⇑(DirectSum.coeAddMonoidHom β„³)) decompose') β†’ motive { decompose' := decompose', left_inv := left_inv, right_inv := right_inv }) β†’ motive t
Lean.Expr.ensureHasNoMVars
Mathlib.Lean.Expr.Basic
Lean.Expr β†’ Lean.MetaM Unit
Std.DTreeMap.Internal.Impl.Const.entryAtIdx?.eq_def
Std.Data.DTreeMap.Internal.Model
βˆ€ {Ξ± : Type u} {Ξ² : Type v} (x : Std.DTreeMap.Internal.Impl Ξ± fun x => Ξ²) (x_1 : β„•), Std.DTreeMap.Internal.Impl.Const.entryAtIdx? x x_1 = match x, x_1 with | Std.DTreeMap.Internal.Impl.leaf, x => none | Std.DTreeMap.Internal.Impl.inner size k v l r, n => match compare n l.size with | Ordering.lt => Std.DTreeMap.Internal.Impl.Const.entryAtIdx? l n | Ordering.eq => some (k, v) | Ordering.gt => Std.DTreeMap.Internal.Impl.Const.entryAtIdx? r (n - l.size - 1)
Mathlib.Tactic.BicategoryLike.StructuralAtom.id.elim
Mathlib.Tactic.CategoryTheory.Coherence.Datatypes
{motive : Mathlib.Tactic.BicategoryLike.StructuralAtom β†’ Sort u} β†’ (t : Mathlib.Tactic.BicategoryLike.StructuralAtom) β†’ t.ctorIdx = 3 β†’ ((e : Lean.Expr) β†’ (f : Mathlib.Tactic.BicategoryLike.Mor₁) β†’ motive (Mathlib.Tactic.BicategoryLike.StructuralAtom.id e f)) β†’ motive t
UInt8._sizeOf_inst
Init.SizeOf
SizeOf UInt8
Int.reduceNeg._regBuiltin.Int.reduceNeg.declare_1._@.Lean.Meta.Tactic.Simp.BuiltinSimprocs.Int.2123988823._hygCtx._hyg.22
Lean.Meta.Tactic.Simp.BuiltinSimprocs.Int
IO Unit
_private.Mathlib.Geometry.Manifold.ContMDiff.Defs.0.contMDiffOn_iff_target._simp_1_1
Mathlib.Geometry.Manifold.ContMDiff.Defs
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {H : Type u_3} [inst_3 : TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [inst_4 : TopologicalSpace M] [inst_5 : ChartedSpace H M] {E' : Type u_5} [inst_6 : NormedAddCommGroup E'] [inst_7 : NormedSpace π•œ E'] {H' : Type u_6} [inst_8 : TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M' : Type u_7} [inst_9 : TopologicalSpace M'] [inst_10 : ChartedSpace H' M'] {f : M β†’ M'} {s : Set M} {n : WithTop β„•βˆž} [IsManifold I n M] [IsManifold I' n M'], ContMDiffOn I I' n f s = (ContinuousOn f s ∧ βˆ€ (x : M) (y : M'), ContDiffOn π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(extChartAt I x).symm) ((extChartAt I x).target ∩ ↑(extChartAt I x).symm ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)))
_private.Mathlib.Data.Set.Finite.Basic.0.Finset.exists.match_1_3
Mathlib.Data.Set.Finite.Basic
βˆ€ {Ξ± : Type u_1} {p : Finset Ξ± β†’ Prop} (motive : (βˆƒ s, βˆƒ (hs : s.Finite), p hs.toFinset) β†’ Prop) (x : βˆƒ s, βˆƒ (hs : s.Finite), p hs.toFinset), (βˆ€ (s : Set Ξ±) (hs : s.Finite) (hs' : p hs.toFinset), motive β‹―) β†’ motive x
UnitAddTorus.mFourierLp._proof_7
Mathlib.Analysis.Fourier.AddCircleMulti
βˆ€ {d : Type u_1}, CompactSpace (d β†’ UnitAddCircle)
IsAbsoluteValue.abv_nonneg
Mathlib.Algebra.Order.AbsoluteValue.Basic
βˆ€ {S : Type u_5} [inst : Semiring S] [inst_1 : PartialOrder S] {R : Type u_6} [inst_2 : Semiring R] (abv : R β†’ S) [IsAbsoluteValue abv] (x : R), 0 ≀ abv x
EReal.coe_ennreal_le_coe_ennreal_iff._simp_1
Mathlib.Data.EReal.Basic
βˆ€ {x y : ENNReal}, (↑x ≀ ↑y) = (x ≀ y)
CategoryTheory.nerveFunctor.full
Mathlib.AlgebraicTopology.SimplicialSet.NerveAdjunction
CategoryTheory.nerveFunctor.Full
CategoryTheory.Presieve.BindStruct.hg
Mathlib.CategoryTheory.Sites.Sieves
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {X : C} {S : CategoryTheory.Presieve X} {R : ⦃Y : C⦄ β†’ ⦃f : Y ⟢ X⦄ β†’ S f β†’ CategoryTheory.Presieve Y} {Z : C} {h : Z ⟢ X} (self : S.BindStruct R h), R β‹― self.g
ModuleCat.monModuleEquivalenceAlgebraForget._proof_5
Mathlib.CategoryTheory.Monoidal.Internal.Module
βˆ€ {R : Type u_1} [inst : CommRing R] (A : CategoryTheory.Mon (ModuleCat R)), CategoryTheory.CategoryStruct.comp (ModuleCat.ofHom { toFun := id, map_add' := β‹―, map_smul' := β‹― }) (ModuleCat.ofHom { toFun := id, map_add' := β‹―, map_smul' := β‹― }) = CategoryTheory.CategoryStruct.id ((ModuleCat.MonModuleEquivalenceAlgebra.functor.comp (CategoryTheory.forgetβ‚‚ (AlgCat R) (ModuleCat R))).obj A)
CategoryTheory.Limits.prod.mapIso_hom
Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {W X Y Z : C} [inst_1 : CategoryTheory.Limits.HasBinaryProduct W X] [inst_2 : CategoryTheory.Limits.HasBinaryProduct Y Z] (f : W β‰… Y) (g : X β‰… Z), (CategoryTheory.Limits.prod.mapIso f g).hom = CategoryTheory.Limits.prod.map f.hom g.hom
_private.Init.Data.BitVec.Lemmas.0.BitVec.toNat_lt_of_msb_false._simp_1_1
Init.Data.BitVec.Lemmas
βˆ€ {p : Prop} [h : Decidable p], (false = decide p) = Β¬p
Lean.Server.Snapshots.Snapshot.recOn
Lean.Server.Snapshots
{motive : Lean.Server.Snapshots.Snapshot β†’ Sort u} β†’ (t : Lean.Server.Snapshots.Snapshot) β†’ ((stx : Lean.Syntax) β†’ (mpState : Lean.Parser.ModuleParserState) β†’ (cmdState : Lean.Elab.Command.State) β†’ motive { stx := stx, mpState := mpState, cmdState := cmdState }) β†’ motive t
AddLocalization.liftOnβ‚‚_mk
Mathlib.GroupTheory.MonoidLocalization.Basic
βˆ€ {M : Type u_1} [inst : AddCommMonoid M] {S : AddSubmonoid M} {p : Sort u_4} (f : M β†’ β†₯S β†’ M β†’ β†₯S β†’ p) (H : βˆ€ {a a' : M} {b b' : β†₯S} {c c' : M} {d d' : β†₯S}, (AddLocalization.r S) (a, b) (a', b') β†’ (AddLocalization.r S) (c, d) (c', d') β†’ f a b c d = f a' b' c' d') (a c : M) (b d : β†₯S), (AddLocalization.mk a b).liftOnβ‚‚ (AddLocalization.mk c d) f H = f a b c d
CategoryTheory.Functor.Monoidal.whiskerLeft_app_snd
Mathlib.CategoryTheory.Monoidal.Cartesian.FunctorCategory
βˆ€ {J : Type u_1} {C : Type u_2} [inst : CategoryTheory.Category.{u_5, u_1} J] [inst_1 : CategoryTheory.Category.{u_6, u_2} C] [inst_2 : CategoryTheory.CartesianMonoidalCategory C] (F₁ : CategoryTheory.Functor J C) {Fβ‚‚ Fβ‚‚' : CategoryTheory.Functor J C} (g : Fβ‚‚ ⟢ Fβ‚‚') (j : J), CategoryTheory.CategoryStruct.comp ((CategoryTheory.MonoidalCategoryStruct.whiskerLeft F₁ g).app j) (CategoryTheory.SemiCartesianMonoidalCategory.snd (F₁.obj j) (Fβ‚‚'.obj j)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.SemiCartesianMonoidalCategory.snd (F₁.obj j) (Fβ‚‚.obj j)) (g.app j)
Polynomial.map_evalRingHom_eval
Mathlib.Algebra.Polynomial.Bivariate
βˆ€ {R : Type u_1} [inst : CommSemiring R] (x y : R) (p : Polynomial (Polynomial R)), Polynomial.eval y (Polynomial.map (Polynomial.evalRingHom x) p) = Polynomial.evalEval x y p
Units.isOpenMap_val
Mathlib.Analysis.Normed.Ring.Units
βˆ€ {R : Type u_1} [inst : NormedRing R] [HasSummableGeomSeries R], IsOpenMap Units.val
IsSemisimpleModule.recOn
Mathlib.RingTheory.SimpleModule.Basic
{R : Type u_2} β†’ [inst : Ring R] β†’ {M : Type u_4} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ {motive : IsSemisimpleModule R M β†’ Sort u} β†’ (t : IsSemisimpleModule R M) β†’ ([toComplementedLattice : ComplementedLattice (Submodule R M)] β†’ motive β‹―) β†’ motive t
Pi.instSub
Mathlib.Algebra.Notation.Pi.Defs
{ΞΉ : Type u_1} β†’ {G : ΞΉ β†’ Type u_4} β†’ [(i : ΞΉ) β†’ Sub (G i)] β†’ Sub ((i : ΞΉ) β†’ G i)
Set.Definable.compl
Mathlib.ModelTheory.Definability
βˆ€ {M : Type w} {A : Set M} {L : FirstOrder.Language} [inst : L.Structure M] {Ξ± : Type u₁} {s : Set (Ξ± β†’ M)}, A.Definable L s β†’ A.Definable L sᢜ
Module.addCommMonoidToAddCommGroup._proof_9
Mathlib.Algebra.Module.NatInt
βˆ€ (R : Type u_2) {M : Type u_1} [inst : Ring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M] (z : β„•) (a : M), ↑(Int.negSucc z) β€’ a = -1 β€’ ↑↑(z + 1) β€’ a
left_subset_compRel
Mathlib.Topology.UniformSpace.Defs
βˆ€ {Ξ± : Type ua} {s t : SetRel Ξ± Ξ±}, idRel βŠ† t β†’ s βŠ† s.comp t
Std.DHashMap.get?_eq_some_getD
Std.Data.DHashMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {m : Std.DHashMap Ξ± Ξ²} [inst : LawfulBEq Ξ±] {a : Ξ±} {fallback : Ξ² a}, a ∈ m β†’ m.get? a = some (m.getD a fallback)
Finset.sup_eq_sSup_image
Mathlib.Data.Finset.Lattice.Fold
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : CompleteLattice Ξ²] (s : Finset Ξ±) (f : Ξ± β†’ Ξ²), s.sup f = sSup (f '' ↑s)
Std.Iterators.Iter.takeWhile_eq
Std.Data.Iterators.Lemmas.Combinators.TakeWhile
βˆ€ {Ξ± Ξ² : Type u_1} [Std.Iterators.Iterator Ξ± Id Ξ²] {P : Ξ² β†’ Bool} {it : Std.Iter Ξ²}, Std.Iterators.Iter.takeWhile P it = (Std.Iterators.IterM.takeWhile P it.toIterM).toIter
AddCommMonCat.instConcreteCategoryAddMonoidHomCarrier
Mathlib.Algebra.Category.MonCat.Basic
CategoryTheory.ConcreteCategory AddCommMonCat fun x1 x2 => ↑x1 β†’+ ↑x2
_private.Mathlib.Probability.Distributions.Exponential.0.ProbabilityTheory.cdf_expMeasure_eq._simp_1_3
Mathlib.Probability.Distributions.Exponential
βˆ€ {Ξ± : Type u} [inst : AddGroup Ξ±] [inst_1 : LE Ξ±] [AddLeftMono Ξ±] {a : Ξ±}, (-a ≀ 0) = (0 ≀ a)