fact
stringlengths
13
15.5k
type
stringclasses
9 values
library
stringclasses
15 values
imports
stringlengths
14
7.64k
βŒ€
filename
stringlengths
12
97
symbolic_name
stringlengths
1
78
index_level
int64
0
38.7k
Lemma iscomm_free_abmonoid (X : hSet) : iscomm (@op (free_abmonoid' X)). Proof. refine (setquotuniv2prop' _ _ _). - intros. apply (isasetmonoid (free_abmonoid' X)). - intros x1 x2. apply (iscompsetquotpr _ (x1 * x2) (x2 * x1)). apply generated_binopeqrel_intro, free_abmonoid_hrel_intro. Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
iscomm_free_abmonoid
1,000
Definition free_abmonoid (X : hSet) : abmonoid := abmonoid_of_monoid (free_abmonoid' X) (iscomm_free_abmonoid X).
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abmonoid
1,001
Definition free_abmonoid_pr (X : hSet) : monoidfun (free_monoid X) (free_abmonoid X) := presented_monoid_pr _.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abmonoid_pr
1,002
Definition free_abmonoid_unit {X : hSet} (x : X) : free_abmonoid X := presented_monoid_intro x.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abmonoid_unit
1,003
Definition free_abmonoid_extend {X : hSet} {Y : abmonoid} (f : X β†’ Y) : monoidfun (free_abmonoid X) Y. Proof. apply (presented_monoid_extend f). unfold iscomprelfun. apply free_abmonoid_hrel_univ. - intros. apply (isasetmonoid Y). - intros x y. rewrite !monoidfunmul. apply commax. Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abmonoid_extend
1,004
Lemma free_abmonoid_extend_homot {X : hSet} {Y : abmonoid} {f f' : X β†’ Y} (h : f ~ f') : free_abmonoid_extend f ~ free_abmonoid_extend f'. Proof. unfold homot. apply setquotunivprop'. - intro x. apply isasetmonoid. - exact (free_monoid_extend_homot h). Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abmonoid_extend_homot
1,005
Lemma free_abmonoid_extend_comp {X : hSet} {Y : abmonoid} (g : monoidfun (free_abmonoid X) Y): free_abmonoid_extend (g ∘ free_abmonoid_unit) ~ g. Proof. apply (presented_monoid_extend_comp g). Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abmonoid_extend_comp
1,006
Definition free_abmonoid_universal_property (X : hSet) (Y : abmonoid) : (X β†’ Y) ≃ monoidfun (free_abmonoid X) Y. Proof. use weq_iso. - apply free_abmonoid_extend. - intro g. exact (g ∘ free_abmonoid_unit). - intro f. apply funextfun. intro x. reflexivity. - intro g. apply monoidfun_paths, funextfun, free_abmonoid_extend_comp. Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abmonoid_universal_property
1,007
Definition free_abmonoidfun {X Y : hSet} (f : X β†’ Y) : monoidfun (free_abmonoid X) (free_abmonoid Y) := free_abmonoid_extend (free_abmonoid_unit ∘ f).
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abmonoidfun
1,008
Lemma free_abmonoidfun_setquotpr {X Y : hSet} (f : X β†’ Y) (x : free_monoid X) : free_abmonoidfun f (setquotpr _ x) = setquotpr _ (free_monoidfun f x). Proof. refine (setquotunivcomm _ _ _ _ _ @ _). rewrite free_monoid_extend_funcomp. apply free_monoid_extend_comp. Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abmonoidfun_setquotpr
1,009
Lemma free_abmonoid_extend_funcomp {X Y : hSet} {Z : abmonoid} (f : X β†’ Y) (g : Y β†’ Z) : free_abmonoid_extend (g ∘ f) ~ free_abmonoid_extend g ∘ free_abmonoidfun f. Proof. unfold homot. apply setquotunivprop'. - intro. apply isasetmonoid. - intro x. refine (setquotunivcomm _ _ _ _ _ @ _). refine (free_monoid_extend_funcomp f g x @ _). unfold funcomp. rewrite free_abmonoidfun_setquotpr. refine (!setquotunivcomm _ _ _ _ _). Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abmonoid_extend_funcomp
1,010
Proposition free_abmonoid_mor_eq {X : hSet} {Y : abmonoid} {f g : monoidfun (free_abmonoid X) Y} (p : ∏ (x : X), f (free_abmonoid_unit x) = g (free_abmonoid_unit x)) : f = g. Proof. use (invmaponpathsweq (invweq (free_abmonoid_universal_property X Y)) f g). use funextsec. exact p. Qed.
Proposition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abmonoid_mor_eq
1,011
Definition presented_abmonoid (X : hSet) (R : hrel (free_abmonoid X)) : abmonoid := abmonoidquot (generated_binopeqrel R).
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_abmonoid
1,012
Definition presented_abmonoid_pr {X : hSet} (R : hrel (free_abmonoid X)) : monoidfun (free_abmonoid X) (presented_abmonoid X R) := monoidquotpr _.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_abmonoid_pr
1,013
Definition presented_abmonoid_intro {X : hSet} {R : hrel (free_abmonoid X)} : X β†’ presented_abmonoid X R := presented_abmonoid_pr R ∘ free_abmonoid_unit.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_abmonoid_intro
1,014
Definition presented_abmonoid_extend {X : hSet} {R : hrel (free_abmonoid X)} {Y : abmonoid} (f : X β†’ Y) (H : iscomprelfun R (free_abmonoid_extend f)) : monoidfun (presented_abmonoid X R) Y. Proof. use monoidquotuniv. - exact (free_abmonoid_extend f). - exact (iscomprelfun_generated_binopeqrel _ H). Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_abmonoid_extend
1,015
Lemma iscomprelfun_presented_abmonoidfun {X : hSet} {R : hrel (free_abmonoid X)} {Y : abmonoid} (g : monoidfun (presented_abmonoid X R) Y) : iscomprelfun R (free_abmonoid_extend (g ∘ presented_abmonoid_intro)). Proof. intros x x' r. rewrite !(free_abmonoid_extend_comp (monoidfuncomp (presented_abmonoid_pr R) g)). apply (maponpaths (pr1 g)). apply iscompsetquotpr. exact (generated_binopeqrel_intro r). Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
iscomprelfun_presented_abmonoidfun
1,016
Lemma presented_abmonoid_extend_comp {X : hSet} {R : hrel (free_abmonoid X)} {Y : abmonoid} (g : monoidfun (presented_abmonoid X R) Y) (H : iscomprelfun R (free_abmonoid_extend (g ∘ presented_abmonoid_intro))) : presented_abmonoid_extend (g ∘ presented_abmonoid_intro) H ~ g. Proof. unfold homot. apply setquotunivprop'. + intro. apply isasetmonoid. + intro x. refine (setquotunivcomm _ _ _ _ _ @ _). exact (free_abmonoid_extend_comp (monoidfuncomp (presented_abmonoid_pr R) g) x). Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_abmonoid_extend_comp
1,017
Definition presented_abmonoid_universal_property {X : hSet} (R : hrel (free_abmonoid X)) (Y : abmonoid) : monoidfun (presented_abmonoid X R) Y ≃ βˆ‘(f : X β†’ Y), iscomprelfun R (free_abmonoid_extend f). Proof. use weq_iso. - intro g. exact (tpair _ (g ∘ presented_abmonoid_intro) (iscomprelfun_presented_abmonoidfun g)). - intro f. exact (presented_abmonoid_extend (pr1 f) (pr2 f)). - intro g. apply monoidfun_paths, funextfun, presented_abmonoid_extend_comp. - intro f. use total2_paths_f. + apply funextfun. intro x. reflexivity. + apply isapropiscomprelfun. Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_abmonoid_universal_property
1,018
Definition presented_abmonoidfun {X Y : hSet} {R : hrel (free_abmonoid X)} {S : hrel (free_abmonoid Y)} (f : X β†’ Y) (H : iscomprelrelfun R S (free_abmonoidfun f)) : monoidfun (presented_abmonoid X R) (presented_abmonoid Y S). Proof. apply (presented_abmonoid_extend (presented_abmonoid_intro ∘ f)). intros x x' r. rewrite !(free_abmonoid_extend_funcomp _ _ _). unfold funcomp. rewrite !(free_abmonoid_extend_comp (presented_abmonoid_pr S)). apply iscompsetquotpr. apply generated_binopeqrel_intro. exact (H x x' r). Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_abmonoidfun
1,019
Definition free_gr_hrel (X : hSet) : hrel (free_monoid (setcoprod X X)) := Ξ» g h, βˆƒ x, x::coprodcomm X X x::[] = g Γ— [] = h.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_gr_hrel
1,020
Lemma free_gr_hrel_in {X : hSet} (x : X β¨Ώ X) : free_gr_hrel X (x::coprodcomm X X x::[]) []. Proof. apply wittohexists with x. split; reflexivity. Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_gr_hrel_in
1,021
Lemma free_gr_hrel_in_rev {X : hSet} (x : X β¨Ώ X) : free_gr_hrel X (coprodcomm X X x::x::[]) []. Proof. pose (H := free_gr_hrel_in (coprodcomm X X x)). rewrite coprodcomm_coprodcomm in H. exact H. Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_gr_hrel_in_rev
1,022
Lemma free_gr_hrel_univ {X : hSet} (P : free_monoid (setcoprod X X) β†’ free_monoid (setcoprod X X) β†’ UU) (HP : ∏ x y, isaprop (P x y)) (Hind : ∏ x, P (x::coprodcomm X X x::[]) []) (x y : free_monoid (setcoprod X X)) : free_gr_hrel X x y β†’ P x y. Proof. apply (@hinhuniv _ (make_hProp (P x y) (HP x y))). intro v. induction v as (x',v), v as (p1,p2), p1, p2. apply Hind. Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_gr_hrel_univ
1,023
Definition fginv_binopfun (X : hSet) : binopfun (free_monoid (setcoprod X X)) (setwithbinop_rev (free_monoid (setcoprod X X))). Proof. refine (binopfuncomp (free_monoidfun _) (reverse_binopfun _)). exact (coprodcomm X X). Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
fginv_binopfun
1,024
Definition fginv_binopfun_homot {X : hSet} (l : free_monoid (setcoprod X X)) : fginv_binopfun X l = fginv l := idpath _.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
fginv_binopfun_homot
1,025
Lemma fginv_fginv {X : hSet} (l : free_monoid (setcoprod X X)) : fginv (fginv l) = l. Proof. unfold fginv. rewrite map_reverse, reverse_reverse, <- map_compose, <- map_idfun. apply map_homot. exact coprodcomm_coprodcomm. Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
fginv_fginv
1,026
Lemma generated_free_gr_hrel_in {X : hSet} (l : free_monoid (setcoprod X X)) : generated_binopeqrel (free_gr_hrel X) (l * fginv l) []. Proof. intros R H. revert l. apply list_ind. - apply eqrelrefl. - intros x xs IH. change (R ((free_monoid_unit x * xs) * (fginv xs * @free_monoid_unit (setcoprod X X) (coprodcomm X X x))) []). rewrite assocax, <- (assocax _ _ _ (free_monoid_unit _)). refine (eqreltrans (pr1 R) _ _ _ (binopeqrel_resp_left R _ (binopeqrel_resp_right R _ IH)) _). apply H, free_gr_hrel_in. Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
generated_free_gr_hrel_in
1,027
Lemma generated_free_gr_hrel_in_rev {X : hSet} (l : free_monoid (setcoprod X X)) : generated_binopeqrel (free_gr_hrel X) (fginv l * l) []. Proof. pose (H := generated_free_gr_hrel_in (fginv l)). rewrite fginv_fginv in H. exact H. Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
generated_free_gr_hrel_in_rev
1,028
Definition invstruct_free_gr (X : hSet) : invstruct (@op (free_gr' X)) (pr2 (free_gr' X)). Proof. use make_invstruct. - use setquotfun. + exact fginv. + refine (iscomprelrelfun_generated_binopeqrel_rev (fginv_binopfun X) _). unfold iscomprelrelfun. apply free_gr_hrel_univ. * intros. apply pr2. * intro x. rewrite fginv_binopfun_homot. apply free_gr_hrel_in_rev. - apply make_isinv. + refine (setquotunivprop' _ _ _). * intro. apply isasetmonoid. * intro l. refine (maponpaths (Ξ» x, x * _) (setquotunivcomm _ _ _ _ _) @ _). apply (iscompsetquotpr _ (fginv l * l) []). apply generated_free_gr_hrel_in_rev. + refine (setquotunivprop' _ _ _). * intro. apply isasetmonoid. * intro l. refine (maponpaths (Ξ» x, _ * x) (setquotunivcomm _ _ _ _ _) @ _). apply (iscompsetquotpr _ (l * fginv l) []). apply generated_free_gr_hrel_in. Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
invstruct_free_gr
1,029
Definition free_gr (X : hSet) : gr := gr_of_monoid (free_gr' X) (invstruct_free_gr X).
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_gr
1,030
Definition free_gr_pr (X : hSet) : monoidfun (free_monoid (setcoprod X X)) (free_gr X) := monoidquotpr _.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_gr_pr
1,031
Definition free_gr_unit {X : hSet} (x : X) : free_gr X. Proof. apply presented_monoid_intro. exact (inl x). Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_gr_unit
1,032
Definition free_gr_extend {X : hSet} {Y : gr} (f : X β†’ Y) : monoidfun (free_gr X) Y. Proof. use presented_monoid_extend. - exact (sumofmaps f (grinv Y ∘ f)). - unfold iscomprelfun. apply free_gr_hrel_univ. + intros x y. apply (isasetmonoid Y). + intro x. induction x as [x|x]. * apply (grrinvax Y (f x)). * apply (grlinvax Y (f x)). Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_gr_extend
1,033
Lemma free_gr_extend_homot {X : hSet} {Y : gr} {f f' : X β†’ Y} (h : f ~ f') : free_gr_extend f ~ free_gr_extend f'. Proof. unfold homot. apply setquotunivprop'. - intro x. apply isasetmonoid. - refine (free_monoid_extend_homot _). apply sumofmaps_homot. + exact h. + intro x. exact (maponpaths (grinv Y) (h x)). Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_gr_extend_homot
1,034
Lemma free_gr_extend_comp {X : hSet} {Y : gr} (g : monoidfun (free_gr X) Y): free_gr_extend (g ∘ free_gr_unit) ~ g. Proof. unfold homot. apply setquotunivprop'. - intro. apply (isasetmonoid Y). - intro l. refine (setquotunivcomm _ _ _ _ _ @ _). refine (_ @ (free_monoid_extend_comp (monoidfuncomp (free_gr_pr X) g)) l). apply (maponpaths iterop_list_mon). apply map_homot. intro x. induction x as [x|x]. + reflexivity. + simpl. refine (!monoidfuninvtoinv g _ @ _). reflexivity. Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_gr_extend_comp
1,035
Definition free_gr_universal_property (X : hSet) (Y : gr) : (X β†’ Y) ≃ monoidfun (free_gr X) Y. Proof. use weq_iso. - apply free_gr_extend. - intro g. exact (g ∘ free_gr_unit). - intro f. apply funextfun. intro x. reflexivity. - intro g. apply monoidfun_paths, funextfun, free_gr_extend_comp. Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_gr_universal_property
1,036
Definition free_grfun {X Y : hSet} (f : X β†’ Y) : monoidfun (free_gr X) (free_gr Y) := free_gr_extend (free_gr_unit ∘ f).
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_grfun
1,037
Lemma sumofmaps_free_gr_unit {X : hSet} : sumofmaps free_gr_unit (grinv (free_gr X) ∘ free_gr_unit) ~ @presented_monoid_intro (setcoprod X X) (free_gr_hrel X). Proof. intro x. induction x as [x|x]; reflexivity. Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
sumofmaps_free_gr_unit
1,038
Lemma free_grfun_setquotpr {X Y : hSet} (f : X β†’ Y) (x : free_monoid (setcoprod X X)) : free_grfun f (setquotpr _ x) = setquotpr _ (@free_monoidfun (setcoprod X X) (setcoprod Y Y) (coprodf f f) x). Proof. refine (setquotunivcomm _ _ _ _ _ @ _). refine (free_monoid_extend_homot _ x @ _). exact (sumofmaps_funcomp f free_gr_unit f (grinv (free_gr Y) ∘ free_gr_unit)). rewrite (@free_monoid_extend_funcomp (setcoprod X X) (setcoprod Y Y)). refine (free_monoid_extend_homot _ _ @ _). exact (sumofmaps_free_gr_unit). apply (@free_monoid_extend_comp (setcoprod _ _)). Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_grfun_setquotpr
1,039
Lemma free_gr_extend_funcomp {X Y : hSet} {Z : gr} (f : X β†’ Y) (g : Y β†’ Z) : free_gr_extend (g ∘ f) ~ free_gr_extend g ∘ free_grfun f. Proof. unfold homot. apply setquotunivprop'. - intro. apply isasetmonoid. - intro x. refine (setquotunivcomm _ _ _ _ _ @ _). refine (free_monoid_extend_homot _ x @ _). exact (sumofmaps_funcomp f g f (grinv Z ∘ g)). refine (@free_monoid_extend_funcomp (setcoprod X X) (setcoprod Y Y) _ _ _ x @ _). unfold funcomp. rewrite free_grfun_setquotpr. refine (!setquotunivcomm _ _ _ _ _). Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_gr_extend_funcomp
1,040
Definition presented_gr (X : hSet) (R : hrel (free_gr X)) : gr := grquot (generated_binopeqrel R).
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_gr
1,041
Definition presented_gr_pr {X : hSet} (R : hrel (free_gr X)) : monoidfun (free_gr X) (presented_gr X R) := monoidquotpr _.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_gr_pr
1,042
Definition presented_gr_intro {X : hSet} {R : hrel (free_gr X)} : X β†’ presented_gr X R := presented_gr_pr R ∘ free_gr_unit.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_gr_intro
1,043
Definition presented_gr_extend {X : hSet} {R : hrel (free_gr X)} {Y : gr} (f : X β†’ Y) (H : iscomprelfun R (free_gr_extend f)) : monoidfun (presented_gr X R) Y. Proof. use monoidquotuniv. - exact (free_gr_extend f). - exact (iscomprelfun_generated_binopeqrel _ H). Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_gr_extend
1,044
Lemma iscomprelfun_presented_grfun {X : hSet} {R : hrel (free_gr X)} {Y : gr} (g : monoidfun (presented_gr X R) Y) : iscomprelfun R (free_gr_extend (g ∘ presented_gr_intro)). Proof. intros x x' r. rewrite !(free_gr_extend_comp (monoidfuncomp (presented_gr_pr R) g)). apply (maponpaths (pr1 g)). apply iscompsetquotpr. exact (generated_binopeqrel_intro r). Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
iscomprelfun_presented_grfun
1,045
Lemma presented_gr_extend_comp {X : hSet} {R : hrel (free_gr X)} {Y : gr} (g : monoidfun (presented_gr X R) Y) (H : iscomprelfun R (free_gr_extend (g ∘ presented_gr_intro))) : presented_gr_extend (g ∘ presented_gr_intro) H ~ g. Proof. unfold homot. apply setquotunivprop'. + intro. apply isasetmonoid. + intro x. refine (setquotunivcomm _ _ _ _ _ @ _). exact (free_gr_extend_comp (monoidfuncomp (presented_gr_pr R) g) _). Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_gr_extend_comp
1,046
Definition presented_gr_universal_property {X : hSet} (R : hrel (free_gr X)) (Y : gr) : monoidfun (presented_gr X R) Y ≃ βˆ‘(f : X β†’ Y), iscomprelfun R (free_gr_extend f). Proof. use weq_iso. - intro g. exact (tpair _ (g ∘ presented_gr_intro) (iscomprelfun_presented_grfun g)). - intro f. exact (presented_gr_extend (pr1 f) (pr2 f)). - intro g. apply monoidfun_paths, funextfun, presented_gr_extend_comp. - intro f. use total2_paths_f. + apply funextfun. intro x. reflexivity. + apply isapropiscomprelfun. Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_gr_universal_property
1,047
Definition presented_grfun {X Y : hSet} {R : hrel (free_gr X)} {S : hrel (free_gr Y)} (f : X β†’ Y) (H : iscomprelrelfun R S (free_grfun f)) : monoidfun (presented_gr X R) (presented_gr Y S). Proof. apply (presented_gr_extend (presented_gr_intro ∘ f)). intros x x' r. rewrite !(free_gr_extend_funcomp _ _ _). unfold funcomp. rewrite !(free_gr_extend_comp (presented_gr_pr S)). apply iscompsetquotpr. apply generated_binopeqrel_intro. exact (H x x' r). Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_grfun
1,048
Definition free_abgr_hrel (X : hSet) : hrel (free_gr X) := Ξ» g h, βˆƒ x y, x * y = g Γ— y * x = h.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abgr_hrel
1,049
Lemma free_abgr_hrel_intro {X : hSet} (l1 l2 : free_gr X) : free_abgr_hrel X (l1 * l2) (l2 * l1). Proof. apply wittohexists with l1. split with l2. split; reflexivity. Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abgr_hrel_intro
1,050
Lemma free_abgr_hrel_univ {X : hSet} (P : free_gr X β†’ free_gr X β†’ UU) (HP : ∏ (x y : free_gr X), isaprop (P x y)) (Hind : ∏ x y, P (x * y) (y * x)) (x y : free_gr X) : free_abgr_hrel X x y β†’ P x y. Proof. apply (@hinhuniv _ (make_hProp (P x y) (HP x y))). intro v. induction v as (x',v). induction v as (y',v). induction v as (p1,p2). induction p1. induction p2. apply Hind. Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abgr_hrel_univ
1,051
Definition free_abgr' (X : hSet) : gr := presented_gr X (free_abgr_hrel X).
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abgr'
1,052
Lemma iscomm_free_abgr (X : hSet) : iscomm (@op (free_abgr' X)). Proof. refine (setquotuniv2prop' _ _ _). - intros. apply (isasetmonoid (free_abgr' X)). - intros x1 x2. apply (iscompsetquotpr _ (x1 * x2) (x2 * x1)). apply generated_binopeqrel_intro, free_abgr_hrel_intro. Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
iscomm_free_abgr
1,053
Definition free_abgr (X : hSet) : abgr := abgr_of_gr (free_abgr' X) (iscomm_free_abgr X).
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abgr
1,054
Definition free_abgr_pr (X : hSet) : monoidfun (free_gr X) (free_abgr X) := monoidquotpr _.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abgr_pr
1,055
Definition free_abgr_unit {X : hSet} (x : X) : free_abgr X := presented_gr_intro x.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abgr_unit
1,056
Definition free_abgr_extend {X : hSet} {Y : abgr} (f : X β†’ Y) : monoidfun (free_abgr X) Y. Proof. apply (presented_gr_extend f). unfold iscomprelfun. apply free_abgr_hrel_univ. - intros. apply (isasetmonoid Y). - intros x y. rewrite !monoidfunmul. apply (commax Y). Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abgr_extend
1,057
Lemma free_abgr_extend_homot {X : hSet} {Y : abgr} {f f' : X β†’ Y} (h : f ~ f') : free_abgr_extend f ~ free_abgr_extend f'. Proof. unfold homot. apply setquotunivprop'. - intro x. apply isasetmonoid. - exact (free_gr_extend_homot h). Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abgr_extend_homot
1,058
Lemma free_abgr_extend_comp {X : hSet} {Y : abgr} (g : monoidfun (free_abgr X) Y): free_abgr_extend (g ∘ free_abgr_unit) ~ g. Proof. exact (presented_gr_extend_comp g _). Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abgr_extend_comp
1,059
Definition free_abgr_universal_property (X : hSet) (Y : abgr) : (X β†’ Y) ≃ monoidfun (free_abgr X) Y. Proof. use weq_iso. - apply free_abgr_extend. - intro g. exact (g ∘ free_abgr_unit). - intro f. apply funextfun. intro x. reflexivity. - intro g. apply monoidfun_paths, funextfun, free_abgr_extend_comp. Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abgr_universal_property
1,060
Definition free_abgrfun {X Y : hSet} (f : X β†’ Y) : monoidfun (free_abgr X) (free_abgr Y) := free_abgr_extend (free_abgr_unit ∘ f).
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abgrfun
1,061
Lemma free_abgrfun_setquotpr {X Y : hSet} (f : X β†’ Y) (x : free_gr X) : free_abgrfun f (setquotpr _ x) = setquotpr _ (free_grfun f x). Proof. refine (setquotunivcomm _ _ _ _ _ @ _). rewrite free_gr_extend_funcomp. exact (free_gr_extend_comp _ (free_grfun f x)). Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abgrfun_setquotpr
1,062
Lemma free_abgr_extend_funcomp {X Y : hSet} {Z : abgr} (f : X β†’ Y) (g : Y β†’ Z) : free_abgr_extend (g ∘ f) ~ free_abgr_extend g ∘ free_abgrfun f. Proof. unfold homot. apply setquotunivprop'. - intro. apply isasetmonoid. - intro x. refine (setquotunivcomm _ _ _ _ _ @ _). refine (free_gr_extend_funcomp _ _ x @ _). unfold funcomp. rewrite free_abgrfun_setquotpr. refine (!setquotunivcomm _ _ _ _ _). Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
free_abgr_extend_funcomp
1,063
Definition presented_abgr (X : hSet) (R : hrel (free_abgr X)) : abgr := abgrquot (generated_binopeqrel R).
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_abgr
1,064
Definition presented_abgr_pr {X : hSet} (R : hrel (free_abgr X)) : monoidfun (free_abgr X) (presented_abgr X R) := monoidquotpr _.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_abgr_pr
1,065
Definition presented_abgr_intro {X : hSet} {R : hrel (free_abgr X)} : X β†’ presented_abgr X R := presented_abgr_pr R ∘ free_abgr_unit.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_abgr_intro
1,066
Definition presented_abgr_extend {X : hSet} {R : hrel (free_abgr X)} {Y : abgr} (f : X β†’ Y) (H : iscomprelfun R (free_abgr_extend f)) : monoidfun (presented_abgr X R) Y. Proof. use monoidquotuniv. - exact (free_abgr_extend f). - exact (iscomprelfun_generated_binopeqrel _ H). Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_abgr_extend
1,067
Lemma iscomprelfun_presented_abgrfun {X : hSet} {R : hrel (free_abgr X)} {Y : abgr} (g : monoidfun (presented_abgr X R) Y) : iscomprelfun R (free_abgr_extend (g ∘ presented_abgr_intro)). Proof. intros x x' r. rewrite !(free_abgr_extend_comp (monoidfuncomp (presented_abgr_pr R) g)). apply (maponpaths (pr1 g)). apply iscompsetquotpr. exact (generated_binopeqrel_intro r). Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
iscomprelfun_presented_abgrfun
1,068
Lemma presented_abgr_extend_comp {X : hSet} {R : hrel (free_abgr X)} {Y : abgr} (g : monoidfun (presented_abgr X R) Y) (H : iscomprelfun R (free_abgr_extend (g ∘ presented_abgr_intro))) : presented_abgr_extend (g ∘ presented_abgr_intro) H ~ g. Proof. unfold homot. apply setquotunivprop'. + intro. apply isasetmonoid. + intro x. refine (setquotunivcomm _ _ _ _ _ @ _). exact (free_abgr_extend_comp (monoidfuncomp (presented_abgr_pr R) g) x). Defined.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_abgr_extend_comp
1,069
Definition presented_abgr_universal_property {X : hSet} (R : hrel (free_abgr X)) (Y : abgr) : monoidfun (presented_abgr X R) Y ≃ βˆ‘(f : X β†’ Y), iscomprelfun R (free_abgr_extend f). Proof. use weq_iso. - intro g. exact (tpair _ (g ∘ presented_abgr_intro) (iscomprelfun_presented_abgrfun g)). - intro f. exact (presented_abgr_extend (pr1 f) (pr2 f)). - intro g. apply monoidfun_paths, funextfun, presented_abgr_extend_comp. - intro f. use total2_paths_f. + apply funextfun. intro x. reflexivity. + apply isapropiscomprelfun. Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_abgr_universal_property
1,070
Definition presented_abgrfun {X Y : hSet} {R : hrel (free_abgr X)} {S : hrel (free_abgr Y)} (f : X β†’ Y) (H : iscomprelrelfun R S (free_abgrfun f)) : monoidfun (presented_abgr X R) (presented_abgr Y S). Proof. apply (presented_abgr_extend (presented_abgr_intro ∘ f)). intros x x' r. rewrite !(free_abgr_extend_funcomp _ _ _). unfold funcomp. rewrite !(free_abgr_extend_comp (presented_abgr_pr S)). apply iscompsetquotpr. apply generated_binopeqrel_intro. exact (H x x' r). Defined.
Definition
Algebra
Require Import UniMath.MoreFoundations.Subtypes. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.IteratedBinaryOperations. Require Import UniMath.Combinatorics.Lists.
Algebra\Free_Monoids_and_Groups.v
presented_abgrfun
1,071
Definition action_op G (X:hSet) : Type := ∏ (g:G) (x:X), X.
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
action_op
1,072
Definition ActionStructure : Type := βˆ‘ (act_mult : action_op G X) (act_unit : ∏ x, act_mult (unel G) x = x), ∏ g h x, act_mult (op g h) x = act_mult g (act_mult h x).
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
ActionStructure
1,073
Definition make act_mult act_unit act_assoc : ActionStructure := act_mult,, act_unit,, act_assoc.
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
make
1,074
Definition act_mult (x:ActionStructure) := pr1 x.
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
act_mult
1,075
Definition act_unit (x:ActionStructure) := pr12 x.
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
act_unit
1,076
Definition act_assoc (x:ActionStructure) := pr22 x.
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
act_assoc
1,077
Lemma isaset_ActionStructure (G:gr) (X:hSet) : isaset (ActionStructure G X). Proof. intros. apply isaset_total2. { apply (impred 2); intro g. apply impred; intro x. apply setproperty. } intro op. apply isaset_total2. { apply (impred 2); intro x. apply hlevelntosn. apply setproperty. } intro un. apply (impred 2); intro g. apply (impred 2); intro h. apply (impred 2); intro x. apply hlevelntosn. apply setproperty. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
isaset_ActionStructure
1,078
Definition Action (G:gr) := total2 (ActionStructure G).
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
Action
1,079
Definition makeAction {G:gr} (X:hSet) (ac:ActionStructure G X) := X,,ac : Action G.
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
makeAction
1,080
Definition ac_set {G:gr} (X:Action G) := pr1 X.
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
ac_set
1,081
Definition ac_type {G:gr} (X:Action G) := pr1hSet (ac_set X).
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
ac_type
1,082
Definition ac_str {G:gr} (X:Action G) := pr2 X : ActionStructure G (ac_set X).
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
ac_str
1,083
Definition ac_mult {G:gr} (X:Action G) := act_mult (pr2 X).
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
ac_mult
1,084
Definition ac_assoc {G:gr} (X:Action G) := act_assoc _ _ (pr2 X) : ∏ g h x, (op g h)*x = g*(h*x).
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
ac_assoc
1,085
Definition right_mult {G:gr} {X:Action G} (x:X) := Ξ» g, g*x.
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
right_mult
1,086
Definition left_mult {G:gr} {X:Action G} (g:G) := Ξ» x:X, g*x.
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
left_mult
1,087
Definition is_equivariant {G:gr} {X Y:Action G} (f:X->Y) : hProp := (βˆ€ g x, f (g*x) = g*(f x))%logic.
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
is_equivariant
1,088
Definition is_equivariant_isaprop {G:gr} {X Y:Action G} (f:X->Y) : isaprop (is_equivariant f).
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
is_equivariant_isaprop
1,089
Definition is_equivariant_identity {G:gr} {X Y:Action G} (p:ac_set X = ac_set Y) : p # ac_str X = ac_str Y ≃ is_equivariant (cast (maponpaths pr1hSet p)). Proof. revert X Y p; intros [X [Xm [Xu Xa]]] [Y [Ym [Yu Ya]]] ? . simpl in p. destruct p; simpl. unfold transportf; simpl. simple refine (make_weq _ _). { intros p g x. simpl in x. simpl. exact (eqtohomot (eqtohomot (maponpaths act_mult p) g) x). } use isweq_iso. { unfold cast; simpl. intro i. assert (p:Xm=Ym). { apply funextsec; intro g. apply funextsec; intro x; simpl in x. exact (i g x). } destruct p. clear i. assert (p:Xu=Yu). { apply funextsec; intro x; simpl in x. apply setproperty. } destruct p. assert (p:Xa=Ya). { apply funextsec; intro g. apply funextsec; intro h. apply funextsec; intro x. apply setproperty. } destruct p. apply idpath. } { intro p. apply isaset_ActionStructure. } { intro is. apply proofirrelevance. apply impred; intros g. apply impred; intros x. apply setproperty. } Defined.
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
is_equivariant_identity
1,090
Definition is_equivariant_comp {G:gr} {X Y Z:Action G} (p:X->Y) (i:is_equivariant p) (q:Y->Z) (j:is_equivariant q) : is_equivariant (funcomp p q). Proof. intros. intros g x. exact (maponpaths q (i g x) @ j g (p x)). Defined.
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
is_equivariant_comp
1,091
Definition ActionMap {G:gr} (X Y:Action G) := total2 (@is_equivariant _ X Y).
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
ActionMap
1,092
Definition underlyingFunction {G:gr} {X Y:Action G} (f:ActionMap X Y) := pr1 f.
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
underlyingFunction
1,093
Definition equivariance {G:gr} {X Y:Action G} (f:ActionMap X Y) : is_equivariant f := pr2 f.
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
equivariance
1,094
Definition composeActionMap {G:gr} (X Y Z:Action G) (p:ActionMap X Y) (q:ActionMap Y Z) : ActionMap X Z. Proof. revert p q; intros [p i] [q j]. exists (funcomp p q). apply is_equivariant_comp. assumption. assumption. Defined.
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
composeActionMap
1,095
Definition ActionIso {G:gr} (X Y:Action G) : Type. Proof. exact (βˆ‘ f:(ac_set X) ≃ (ac_set Y), is_equivariant f). Defined.
Definition
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
ActionIso
1,096
Lemma ActionIso_isaset {G:gr} (X Y:Action G) : isaset (ActionIso X Y). Proof. apply (isofhlevelsninclb _ pr1). { apply isinclpr1; intro f. apply propproperty. } apply isofhlevelsnweqtohlevelsn. apply setproperty. Defined.
Lemma
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
ActionIso_isaset
1,097
Lemma underlyingIso_incl {G:gr} {X Y:Action G} : isincl (underlyingIso : ActionIso X Y β†’ X ≃ Y). Proof. intros. apply isinclpr1; intro f. apply propproperty. Defined.
Lemma
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
underlyingIso_incl
1,098
Lemma underlyingIso_injectivity {G:gr} {X Y:Action G} (e f:ActionIso X Y) : (e = f) ≃ (underlyingIso e = underlyingIso f). Proof. intros. apply weqonpathsincl. apply underlyingIso_incl. Defined.
Lemma
Algebra
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.Propositions. Require Import UniMath.MoreFoundations.Notations. Require Import UniMath.MoreFoundations.Univalence. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.Monoids. Require Import UniMath.Algebra.Groups. Require Import UniMath.OrderTheory.OrderedSets.OrderedSets. Import UniMath.MoreFoundations.PartA.
Algebra\GroupAction.v
underlyingIso_injectivity
1,099