fact
stringlengths
13
15.5k
type
stringclasses
9 values
library
stringclasses
15 values
imports
stringlengths
14
7.64k
βŒ€
filename
stringlengths
12
97
symbolic_name
stringlengths
1
78
index_level
int64
0
38.7k
Lemma iscomm_CFmult : ∏ x y : X, x * y = y * x. Proof. now apply ringcomm2. Qed.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\ConstructiveStructures.v
iscomm_CFmult
800
Lemma islinv_CFinv : ∏ (x : X) (Hx0 : x β‰  0), (CFinv x Hx0) * x = 1. Proof. exact (islinv_CCDRinv (X := ConstructiveField_ConstructiveCommutativeDivisionRig X)). Qed.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\ConstructiveStructures.v
islinv_CFinv
801
Lemma isrinv_CFinv : ∏ (x : X) (Hx0 : x β‰  0), x * (CFinv x Hx0) = 1. Proof. exact (isrinv_CCDRinv (X := ConstructiveField_ConstructiveCommutativeDivisionRig X)). Qed.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\ConstructiveStructures.v
isrinv_CFinv
802
Lemma islabsorb_CFzero_CFmult : ∏ x : X, 0 * x = 0. Proof. now apply ringmult0x. Qed.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\ConstructiveStructures.v
islabsorb_CFzero_CFmult
803
Lemma israbsorb_CFzero_CFmult : ∏ x : X, x * 0 = 0. Proof. now apply ringmultx0. Qed.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\ConstructiveStructures.v
israbsorb_CFzero_CFmult
804
Lemma isldistr_CFplus_CFmult : ∏ x y z : X, z * (x + y) = z * x + z * y. Proof. now apply ringdistraxs. Qed.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\ConstructiveStructures.v
isldistr_CFplus_CFmult
805
Lemma isrdistr_CFplus_CFmult : ∏ x y z : X, (x + y) * z = x * z + y * z. Proof. intros. rewrite !(iscomm_CFmult _ z). now apply isldistr_CFplus_CFmult. Qed.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\ConstructiveStructures.v
isrdistr_CFplus_CFmult
806
Lemma apCFplus : ∏ x x' y y' : X, x + y β‰  x' + y' β†’ x β‰  x' ∨ y β‰  y'. Proof. exact (apCCDRplus (X := ConstructiveField_ConstructiveCommutativeDivisionRig X)). Qed.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\ConstructiveStructures.v
apCFplus
807
Lemma CFplus_apcompat_l : ∏ x y z : X, y + x β‰  z + x <-> y β‰  z. Proof. intros x y z. split. - exact (CCDRplus_apcompat_l (X := ConstructiveField_ConstructiveCommutativeDivisionRig X) _ _ _). - intros Hap. apply (CCDRplus_apcompat_l (X := ConstructiveField_ConstructiveCommutativeDivisionRig X) (- x)). change ((y + x) + - x β‰  (z + x) + - x). rewrite !isassoc_CFplus, isrinv_CFopp, !isrunit_CFzero_CFplus. exact Hap. Qed.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\ConstructiveStructures.v
CFplus_apcompat_l
808
Lemma CFplus_apcompat_r : ∏ x y z : X, x + y β‰  x + z <-> y β‰  z. Proof. intros x y z. rewrite !(iscomm_CFplus x). now apply CFplus_apcompat_l. Qed.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\ConstructiveStructures.v
CFplus_apcompat_r
809
Lemma apCFmult : ∏ x x' y y' : X, x * y β‰  x' * y' β†’ x β‰  x' ∨ y β‰  y'. Proof. exact (apCCDRmult (X := ConstructiveField_ConstructiveCommutativeDivisionRig X)). Qed.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\ConstructiveStructures.v
apCFmult
810
Lemma CFmult_apcompat_l : ∏ x y z : X, y * x β‰  z * x β†’ y β‰  z. Proof. exact (CCDRmult_apcompat_l (X := ConstructiveField_ConstructiveCommutativeDivisionRig X)). Qed.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\ConstructiveStructures.v
CFmult_apcompat_l
811
Lemma CFmult_apcompat_l' : ∏ x y z : X, x β‰  0 β†’ y β‰  z β†’ y * x β‰  z * x. Proof. exact (CCDRmult_apcompat_l' (X := ConstructiveField_ConstructiveCommutativeDivisionRig X)). Qed.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\ConstructiveStructures.v
CFmult_apcompat_l'
812
Lemma CFmult_apcompat_r : ∏ x y z : X, x * y β‰  x * z β†’ y β‰  z. Proof. exact (CCDRmult_apcompat_r (X := ConstructiveField_ConstructiveCommutativeDivisionRig X)). Qed.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\ConstructiveStructures.v
CFmult_apcompat_r
813
Lemma CFmult_apcompat_r' : ∏ x y z : X, x β‰  0 β†’ y β‰  z β†’ x * y β‰  x * z. Proof. exact (CCDRmult_apcompat_r' (X := ConstructiveField_ConstructiveCommutativeDivisionRig X)). Qed.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\ConstructiveStructures.v
CFmult_apcompat_r'
814
Lemma CFmultapCFzero : ∏ x y : X, x * y β‰  0 β†’ x β‰  0 ∧ y β‰  0. Proof. exact (CCDRmultapCCDRzero (X := ConstructiveField_ConstructiveCommutativeDivisionRig X)). Qed.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\ConstructiveStructures.v
CFmultapCFzero
815
Definition isnonzerorig (X : rig) : UU := (1%rig : X) != 0%rig.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isnonzerorig
816
Definition isDivRig (X : rig) : UU := isnonzerorig X Γ— (∏ x : X, x != 0%rig β†’ multinvpair X x).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig
817
Lemma isaprop_isDivRig (X : rig) : isaprop (isDivRig X). Proof. apply isofhleveldirprod. - now apply isapropneg. - apply impred_isaprop ; intro. apply isapropimpl. now apply isapropinvpair. Qed.
Lemma
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isaprop_isDivRig
818
Definition isDivRig_zero {X : rig} (is : isDivRig X) : X := 0%rig.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig_zero
819
Definition isDivRig_one {X : rig} (is : isDivRig X) : X := 1%rig.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig_one
820
Definition isDivRig_plus {X : rig} (is : isDivRig X) : binop X := Ξ» x y : X, (x + y)%rig.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig_plus
821
Definition isDivRig_mult {X : rig} (is : isDivRig X) : binop X := Ξ» x y : X, (x * y)%rig.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig_mult
822
Definition isDivRig_inv {X : rig} (is : isDivRig X) : (βˆ‘ x : X, x != isDivRig_zero is) β†’ X := Ξ» x, pr1 ((pr2 is) (pr1 x) (pr2 x)).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig_inv
823
Definition isDivRig_isassoc_plus {X : rig} (is : isDivRig X) : isassoc (isDivRig_plus is) := rigassoc1 X.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig_isassoc_plus
824
Definition isDivRig_islunit_x0 {X : rig} (is : isDivRig X) : islunit (isDivRig_plus is) (isDivRig_zero is) := riglunax1 X.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig_islunit_x0
825
Definition isDivRig_isrunit_x0 {X : rig} (is : isDivRig X) : isrunit (isDivRig_plus is) (isDivRig_zero is) := rigrunax1 X.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig_isrunit_x0
826
Definition isDivRig_iscomm_plus {X : rig} (is : isDivRig X) : iscomm (isDivRig_plus is) := rigcomm1 X.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig_iscomm_plus
827
Definition isDivRig_isassoc_mult {X : rig} (is : isDivRig X) : isassoc (isDivRig_mult is) := rigassoc2 X.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig_isassoc_mult
828
Definition isDivRig_islunit_x1 {X : rig} (is : isDivRig X) : islunit (isDivRig_mult is) (isDivRig_one is) := riglunax2 X.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig_islunit_x1
829
Definition isDivRig_isrunit_x1 {X : rig} (is : isDivRig X) : isrunit (isDivRig_mult is) (isDivRig_one is) := rigrunax2 X.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig_isrunit_x1
830
Definition isDivRig_islinv {X : rig} (is : isDivRig X) : ∏ (x : X) (Hx : x != isDivRig_zero is), isDivRig_mult is (isDivRig_inv is (x,, Hx)) x = isDivRig_one is := λ (x : X) (Hx : x != isDivRig_zero is), pr1 (pr2 (pr2 is x Hx)).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig_islinv
831
Definition isDivRig_isrinv {X : rig} (is : isDivRig X) : ∏ (x : X) (Hx : x != isDivRig_zero is), isDivRig_mult is x (isDivRig_inv is (x,, Hx)) = isDivRig_one is := λ (x : X) (Hx : x != isDivRig_zero is), pr2 (pr2 (pr2 is x Hx)).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig_isrinv
832
Definition isDivRig_isldistr {X : rig} (is : isDivRig X) : isldistr (isDivRig_plus is) (isDivRig_mult is) := rigldistr X.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig_isldistr
833
Definition isDivRig_isrdistr {X : rig} (is : isDivRig X) : isrdistr (isDivRig_plus is) (isDivRig_mult is) := rigrdistr X.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig_isrdistr
834
Definition DivRig : UU := βˆ‘ (X : rig), isDivRig X.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
DivRig
835
Definition pr1DivRig (F : DivRig) : hSet := pr1 F.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
pr1DivRig
836
Definition zeroDivRig {F : DivRig} : F := isDivRig_zero (pr2 F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
zeroDivRig
837
Definition oneDivRig {F : DivRig} : F := isDivRig_one (pr2 F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
oneDivRig
838
Definition plusDivRig {F : DivRig} : binop F := isDivRig_plus (pr2 F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
plusDivRig
839
Definition multDivRig {F : DivRig} : binop F := isDivRig_mult (pr2 F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
multDivRig
840
Definition invDivRig {F : DivRig} : (βˆ‘ x : F, x != zeroDivRig) β†’ F := isDivRig_inv (pr2 F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
invDivRig
841
Definition divDivRig {F : DivRig} : F β†’ (βˆ‘ x : F, x != zeroDivRig) β†’ F := Ξ» x y, multDivRig x (invDivRig y).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
divDivRig
842
Definition DivRig_isDivRig (F : DivRig) : isDivRig (pr1 F) := (pr2 F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
DivRig_isDivRig
843
Definition isDivRig_DivRig {X : rig} : isDivRig X β†’ DivRig := Ξ» is : isDivRig X, X ,, is.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
isDivRig_DivRig
844
Definition DivRig_isassoc_plus: ∏ x y z : F, x + y + z = x + (y + z) := isDivRig_isassoc_plus (DivRig_isDivRig F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
DivRig_isassoc_plus
845
Definition DivRig_islunit_zero: ∏ x : F, 0 + x = x := isDivRig_islunit_x0 (DivRig_isDivRig F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
DivRig_islunit_zero
846
Definition DivRig_isrunit_zero: ∏ x : F, x + 0 = x := isDivRig_isrunit_x0 (DivRig_isDivRig F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
DivRig_isrunit_zero
847
Definition DivRig_iscomm_plus: ∏ x y : F, x + y = y + x := isDivRig_iscomm_plus (DivRig_isDivRig F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
DivRig_iscomm_plus
848
Definition DivRig_isassoc_mult: ∏ x y z : F, x * y * z = x * (y * z) := isDivRig_isassoc_mult (DivRig_isDivRig F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
DivRig_isassoc_mult
849
Definition DivRig_islunit_one: ∏ x : F, 1 * x = x := isDivRig_islunit_x1 (DivRig_isDivRig F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
DivRig_islunit_one
850
Definition DivRig_isrunit_one: ∏ x : F, x * 1 = x := isDivRig_isrunit_x1 (DivRig_isDivRig F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
DivRig_isrunit_one
851
Definition DivRig_islinv: ∏ (x : F) (Hx : x != 0), / (x,, Hx) * x = 1 := isDivRig_islinv (DivRig_isDivRig F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
DivRig_islinv
852
Definition DivRig_isrinv: ∏ (x : F) (Hx : x != 0), x * / (x,, Hx) = 1 := isDivRig_isrinv (DivRig_isDivRig F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
DivRig_isrinv
853
Definition DivRig_isldistr: ∏ x y z : F, z * (x + y) = z * x + z * y := isDivRig_isldistr (DivRig_isDivRig F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
DivRig_isldistr
854
Definition DivRig_isrdistr: ∏ x y z : F, (x + y) * z = x * z + y * z := isDivRig_isrdistr (DivRig_isDivRig F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
DivRig_isrdistr
855
Definition CommDivRig : UU := βˆ‘ (X : commrig), isDivRig X.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
CommDivRig
856
Definition CommDivRig_DivRig (F : CommDivRig) : DivRig := commrigtorig (pr1 F) ,, pr2 F.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
CommDivRig_DivRig
857
Definition CommDivRig_isassoc_plus: ∏ x y z : F, x + y + z = x + (y + z) := DivRig_isassoc_plus.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
CommDivRig_isassoc_plus
858
Definition CommDivRig_islunit_zero: ∏ x : F, 0 + x = x := DivRig_islunit_zero.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
CommDivRig_islunit_zero
859
Definition CommDivRig_isrunit_zero: ∏ x : F, x + 0 = x := DivRig_isrunit_zero.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
CommDivRig_isrunit_zero
860
Definition CommDivRig_iscomm_plus: ∏ x y : F, x + y = y + x := DivRig_iscomm_plus.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
CommDivRig_iscomm_plus
861
Definition CommDivRig_isassoc_mult: ∏ x y z : F, x * y * z = x * (y * z) := DivRig_isassoc_mult.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
CommDivRig_isassoc_mult
862
Definition CommDivRig_islunit_one: ∏ x : F, 1 * x = x := DivRig_islunit_one.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
CommDivRig_islunit_one
863
Definition CommDivRig_isrunit_one: ∏ x : F, x * 1 = x := DivRig_isrunit_one.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
CommDivRig_isrunit_one
864
Definition CommDivRig_iscomm_mult: ∏ x y : F, x * y = y * x := rigcomm2 (pr1 F).
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
CommDivRig_iscomm_mult
865
Definition CommDivRig_islinv: ∏ (x : F) (Hx : x != 0), / (x,, Hx) * x = 1 := DivRig_islinv.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
CommDivRig_islinv
866
Definition CommDivRig_isrinv: ∏ (x : F) (Hx : x != 0), x * / (x,, Hx) = 1 := DivRig_isrinv.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
CommDivRig_isrinv
867
Definition CommDivRig_isldistr: ∏ x y z : F, z * (x + y) = z * x + z * y := DivRig_isldistr.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
CommDivRig_isldistr
868
Definition CommDivRig_isrdistr: ∏ x y z : F, (x + y) * z = x * z + y * z := DivRig_isrdistr.
Definition
Algebra
Require Import UniMath.MoreFoundations.Tactics.
Algebra\DivisionRig.v
CommDivRig_isrdistr
869
Lemma islcancelableif {X : hSet} (opp : binop X) (x : X) (is : ∏ a b : X, opp x a = opp x b β†’ a = b) : islcancelable opp x. Proof. intros. apply isinclbetweensets. - apply (setproperty X). - apply (setproperty X). - apply is. Defined.
Lemma
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
islcancelableif
870
Lemma isrcancelableif {X : hSet} (opp : binop X) (x : X) (is : ∏ a b : X, opp a x = opp b x β†’ a = b) : isrcancelable opp x. Proof. intros. apply isinclbetweensets. - apply (setproperty X). - apply (setproperty X). - apply is. Defined.
Lemma
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
isrcancelableif
871
Definition iscancelableif {X : hSet} (opp : binop X) (x : X) (isl : ∏ a b : X, opp x a = opp x b β†’ a = b) (isr : ∏ a b : X, opp a x = opp b x β†’ a = b) : iscancelable opp x := islcancelableif opp x isl ,, isrcancelableif opp x isr.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
iscancelableif
872
Definition linvpair (X : monoid) (x : X) : UU := βˆ‘ (x' : X), x' * x = 1.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
linvpair
873
Definition pr1linvpair (X : monoid) (x : X) : linvpair X x β†’ X := @pr1 _ _.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
pr1linvpair
874
Definition linvpairxy (X : monoid) (x y : X) (x' : linvpair X x) (y' : linvpair X y) : linvpair X (x * y). Proof. intros. exists (pr1 y' * pr1 x'). rewrite (assocax _ _ _ (x * y)). rewrite <- (assocax _ _ x y). rewrite (pr2 x'). rewrite (lunax _ y). rewrite (pr2 y'). apply idpath. Defined.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
linvpairxy
875
Definition lcanfromlinv (X : monoid) (a b c : X) (c' : linvpair X c) (e : c * a = c * b) : a = b. Proof. intros. set (e' := maponpaths (Ξ» x : X, (pr1 c') * x) e). simpl in e'. rewrite <- (assocax X _ _ _) in e'. rewrite <- (assocax X _ _ _) in e'. rewrite (pr2 c') in e'. rewrite (lunax X a) in e'. rewrite (lunax X b) in e'. apply e'. Defined.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
lcanfromlinv
876
Definition rinvpair (X : monoid) (x : X) : UU := βˆ‘ (x' : X), x * x' = 1.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
rinvpair
877
Definition pr1rinvpair (X : monoid) (x : X) : rinvpair X x β†’ X := @pr1 _ _.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
pr1rinvpair
878
Definition rinvpairxy (X : monoid) (x y : X) (x' : rinvpair X x) (y' : rinvpair X y) : rinvpair X (x * y). Proof. intros. exists (pr1 y' * pr1 x'). rewrite (assocax _ x y _). rewrite <- (assocax _ y _ _). rewrite (pr2 y'). rewrite (lunax _ _). rewrite (pr2 x'). apply idpath. Defined.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
rinvpairxy
879
Definition rcanfromrinv (X : monoid) (a b c : X) (c' : rinvpair X c) (e : a * c = b * c) : a = b. Proof. intros. set (e' := maponpaths (Ξ» x : X, x * (pr1 c')) e). simpl in e'. rewrite (assocax X _ _ _) in e'. rewrite (assocax X _ _ _) in e'. rewrite (pr2 c') in e'. rewrite (runax X a) in e'. rewrite (runax X b) in e'. apply e'. Defined.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
rcanfromrinv
880
Lemma pathslinvtorinv (X : monoid) (x : X) (x' : linvpair X x) (x'' : rinvpair X x) : pr1 x' = pr1 x''. Proof. intros. induction (runax X (pr1 x')). induction (pr2 x''). set (int := x * pr1 x''). rewrite <- (lunax X (pr1 x'')). induction (pr2 x'). unfold int. apply (!assocax X _ _ _). Defined.
Lemma
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
pathslinvtorinv
881
Definition invpair (X : monoid) (x : X) : UU := βˆ‘ (x' : X), (x' * x = 1) Γ— (x * x' = 1).
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
invpair
882
Definition pr1invpair (X : monoid) (x : X) : invpair X x β†’ X := @pr1 _ _.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
pr1invpair
883
Definition invtolinv (X : monoid) (x : X) (x' : invpair X x) : linvpair X x := pr1 x' ,, pr12 x'.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
invtolinv
884
Definition invtorinv (X : monoid) (x : X) (x' : invpair X x) : rinvpair X x := pr1 x' ,, pr22 x'.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
invtorinv
885
Lemma isapropinvpair (X : monoid) (x : X) : isaprop (invpair X x). Proof. intros. apply invproofirrelevance. intros x' x''. apply (invmaponpathsincl _ (isinclpr1 _ (Ξ» a, isapropdirprod _ _ (setproperty X _ _) (setproperty X _ _)))). apply (pathslinvtorinv X x (invtolinv X x x') (invtorinv X x x'')). Defined.
Lemma
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
isapropinvpair
886
Definition invpairxy (X : monoid) (x y : X) (x' : invpair X x) (y' : invpair X y) : invpair X (x * y). Proof. intros. exists (pr1 y' * pr1 x'). split. - apply (pr2 (linvpairxy _ x y (invtolinv _ x x') (invtolinv _ y y'))). - apply (pr2 (rinvpairxy _ x y (invtorinv _ x x') (invtorinv _ y y'))). Defined.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
invpairxy
887
Lemma grfrompathsxy (X : gr) {a b : X} (e : a = b) : a * grinv X b = 1. Proof. intros. set (e' := maponpaths (Ξ» x : X, x * grinv X b) e). simpl in e'. rewrite (grrinvax X _) in e'. apply e'. Defined.
Lemma
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
grfrompathsxy
888
Lemma grtopathsxy (X : gr) {a b : X} (e : a * grinv X b = 1) : a = b . Proof. intros. set (e' := maponpaths (Ξ» x, x * b) e). simpl in e'. rewrite (assocax X) in e'. rewrite (grlinvax X) in e'. rewrite (lunax X) in e'. rewrite (runax X) in e'. apply e'. Defined.
Lemma
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
grtopathsxy
889
Definition multlinvpair (X : rig) (x : X) : UU := linvpair (rigmultmonoid X) x.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
multlinvpair
890
Definition multrinvpair (X : rig) (x : X) : UU := rinvpair (rigmultmonoid X) x.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
multrinvpair
891
Definition multinvpair (X : rig) (x : X) : UU := invpair (rigmultmonoid X) x.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
multinvpair
892
Definition rigneq0andmultlinv (X : rig) (n m : X) (isnm : ((n * m) != 0)%rig) : n != 0%rig. Proof. intros. intro e. rewrite e in isnm. rewrite (rigmult0x X) in isnm. induction (isnm (idpath _)). Defined.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
rigneq0andmultlinv
893
Definition rigneq0andmultrinv (X : rig) (n m : X) (isnm : ((n * m) != 0)%rig) : m != 0%rig. Proof. intros. intro e. rewrite e in isnm. rewrite (rigmultx0 _) in isnm. induction (isnm (idpath _)). Defined.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
rigneq0andmultrinv
894
Definition ringneq0andmultlinv (X : ring) (n m : X) (isnm : ((n * m) != 0)) : n != 0. Proof. intros. intro e. rewrite e in isnm. rewrite (ringmult0x X) in isnm. induction (isnm (idpath _)). Defined.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
ringneq0andmultlinv
895
Definition ringneq0andmultrinv (X : ring) (n m : X) (isnm : ((n * m) != 0)) : m != 0. Proof. intros. intro e. rewrite e in isnm. rewrite (ringmultx0 _) in isnm. induction (isnm (idpath _)). Defined.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
ringneq0andmultrinv
896
Definition ringpossubmonoid (X : ring) {R : hrel X} (is1 : isringmultgt X R) (is2 : R 1 0) : @submonoid (ringmultmonoid X). Proof. intros. exists (Ξ» x, R x 0). split. - intros x1 x2. apply is1. apply (pr2 x1). apply (pr2 x2). - apply is2. Defined.
Definition
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
ringpossubmonoid
897
Lemma isinvringmultgtif (X : ring) {R : hrel X} (is0 : @isbinophrel X R) (is1 : isringmultgt X R) (nc : neqchoice R) (isa : isasymm R) : isinvringmultgt X R. Proof. intros. split. - intros a b rab0 ra0. assert (int : b != 0). { intro e. rewrite e in rab0. rewrite (ringmultx0 X _) in rab0. apply (isa _ _ rab0 rab0). } induction (nc _ _ int) as [ g | l ]. + apply g. + set (int' := ringmultgt0lt0 X is0 is1 ra0 l). induction (isa _ _ rab0 int'). - intros a b rab0 rb0. assert (int : a != 0). { intro e. rewrite e in rab0. rewrite (ringmult0x X _) in rab0. apply (isa _ _ rab0 rab0). } induction (nc _ _ int) as [ g | l ]. + apply g. + set (int' := ringmultlt0gt0 X is0 is1 l rb0). induction (isa _ _ rab0 int'). Defined.
Lemma
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
isinvringmultgtif
898
Lemma isnonzerolinvel (X : ring) (is : isnonzerorig X) (x : X) (x' : multlinvpair X x) : ((pr1 x') != 0). Proof. intros. apply (negf (maponpaths (Ξ» a : X, a * x))). assert (e := pr2 x'). change (pr1 x' * x = 1) in e. change (pr1 x' * x != 0 * x). rewrite e. rewrite (ringmult0x X _). apply is. Defined.
Lemma
Algebra
Require Import UniMath.Algebra.Groups.
Algebra\Domains_and_Fields.v
isnonzerolinvel
899